Background: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins.

Methods: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis.

Results: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1 mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1.

Conclusions: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9822875PMC
http://dx.doi.org/10.1161/CIRCRESAHA.122.321723DOI Listing

Publication Analysis

Top Keywords

lesional macrophages
12
macrophage epsins
12
cholesterol efflux
12
epsins
11
cholesterol transport
8
targeting epsins
8
small-interfering rnas
8
lipid metabolism
8
metabolism transport
8
lipid uptake
8

Similar Publications

Bone Marrow-derived NGFR-positive Dendritic Cells Regulate Arterial Remodeling.

Am J Physiol Cell Physiol

January 2025

Department of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa, Japan.

It has been proposed that bone marrow contributes to the pathogenesis of arteriosclerosis. Nerve growth factor receptor (NGFR) is expressed in bone marrow stromal cells; it is also present in peripheral blood and ischemic coronary arteries. We hypothesized that bone marrow-derived NGFR-positive (NGFR) cells regulate arterial remodeling.

View Article and Find Full Text PDF

Identification of JNK-JUN-NCOA axis as a therapeutic target for macrophage ferroptosis in chronic apical periodontitis.

Int J Med Sci

January 2025

Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.

This study aimed to investigate the involvement of macrophage ferroptosis in chronic apical periodontitis (CAP) and determine if blocking JNK/JUN/NCOA4 axis could alleviate CAP by regulating macrophage ferroptosis. Firstly, the models of apical periodontitis (AP) and models of CAP, including clinical specimens and rats' periapical lesions, were utilized to investigate the role of macrophage ferroptosis in CAP by detecting the ferroptosis related factors. The activation of the JNK/JUN/NCOA4 axis was observed in CAP models.

View Article and Find Full Text PDF

Apolipoprotein B-containing lipoproteins in atherogenesis.

Nat Rev Cardiol

January 2025

Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.

Apolipoprotein B (apoB) is the main structural protein of LDLs, triglyceride-rich lipoproteins and lipoprotein(a), and is crucial for their formation, metabolism and atherogenic properties. In this Review, we present insights into the role of apoB-containing lipoproteins in atherogenesis, with an emphasis on the mechanisms leading to plaque initiation and growth. LDL, the most abundant cholesterol-rich lipoprotein in plasma, is causally linked to atherosclerosis.

View Article and Find Full Text PDF

Nanoceria as a non-steroidal anti-inflammatory drug for endometriosis theranostics.

J Control Release

December 2024

Department of Obstetrics, Gynecology and Women's Health, University of Missouri School of Medicine, 1030 Hitt Street, Columbia, MO 65211, USA. Electronic address:

Endometriosis, the growth of endometrial-like tissue outside the uterus, causes chronic pain and infertility in 10 % of reproductive-aged women worldwide. Unfortunately, no permanent cure exists, and current medical and surgical treatments offer only temporary relief. Endometriosis is a chronic inflammatory disease characterized by immune system dysfunction.

View Article and Find Full Text PDF

Cysteinyl leukotrienes (LTs) and their receptors are involved in the pathogenesis of abdominal aortic aneurysms (AAAs). However, whether CysLT1 receptor antagonists such as montelukast can influence experimental nondissecting AAA remains unclear. Nondissecting AAAs were induced in C57BL/6J mice by transient aortic luminal infusion of porcine pancreatic elastase (PPE).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!