iClick synthesis of network metallopolymers.

Dalton Trans

University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.

Published: December 2022

Described is an approach to preparing the first iClick network metallopolymers with porous properties. Treating digoldazido complex 2-AuN3 with trigoldacetylide 3-AuPPh3 or 3-AuPEt3, trialkyne 3-H, tetragoldacetylide 4-AuPPh3, or tetraalkyne 4-H in CHCl affords five iClick network metallopolymers 5-AuPPh3, 5-AuPEt3, 5-H, 6-AuPPh3, and 6-H. Confirmation of the iClick network metallopolymers comes from FTIR, C solid-state cross-coupling magic angle spinning (CPMAS) NMR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and nitrogen and CO sorption analysis. Employing model complexes 7-AuPPh3, 7-AuPEt3, 7-H, 8-AuPPh3, and 8-H provides structural insights due to the insolubility of iClick network metallopolymers.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt01624aDOI Listing

Publication Analysis

Top Keywords

network metallopolymers
20
iclick network
16
iclick
5
network
5
metallopolymers
5
iclick synthesis
4
synthesis network
4
metallopolymers described
4
described approach
4
approach preparing
4

Similar Publications

Iminophosphoranes with the general formula (RP═NR') have great potential in synthetic chemistry as valuable precursors/intermediates in organic synthesis or as building blocks for various organic compounds. However, the synthetic approaches and conditions to prepare iminophosphoranes are still poorly understood, limiting the utility of this chemistry for organic materials. In this article, a simple and efficient synthesis of previously unattainable poly(arylene iminophosphoranes) is reported.

View Article and Find Full Text PDF

In the pursuit of fabricating functional ceramic nanostructures, the design of preceramic functional polymers has garnered significant interest. With their easily adaptable chemical composition, molecular structure, and processing versatility, these polymers hold immense potential in this field. Our study succeeded in focusing on synthesizing ferrocene-containing block copolymers (BCPs) based on polyacrylonitrile (PAN).

View Article and Find Full Text PDF

This review is devoted to the description of methods for the self-healing of polymers, polymer composites, and coatings. The self-healing of damages that occur during the operation of the corresponding structures makes it possible to extend the service life of the latter, and in this case, the problem of saving non-renewable resources is simultaneously solved. Two strategies are considered: (a) creating reversible crosslinks in the thermoplastic and (b) introducing a healing agent into cracks.

View Article and Find Full Text PDF

iClick synthesis of network metallopolymers.

Dalton Trans

December 2022

University of Florida, Department of Chemistry, Center for Catalysis, P.O. Box 117200, Gainesville, FL, 32611, USA.

Described is an approach to preparing the first iClick network metallopolymers with porous properties. Treating digoldazido complex 2-AuN3 with trigoldacetylide 3-AuPPh3 or 3-AuPEt3, trialkyne 3-H, tetragoldacetylide 4-AuPPh3, or tetraalkyne 4-H in CHCl affords five iClick network metallopolymers 5-AuPPh3, 5-AuPEt3, 5-H, 6-AuPPh3, and 6-H. Confirmation of the iClick network metallopolymers comes from FTIR, C solid-state cross-coupling magic angle spinning (CPMAS) NMR spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and nitrogen and CO sorption analysis.

View Article and Find Full Text PDF

Compared with single-network hydrogels, double-network hydrogels offer higher mechanical strength and toughness. Integrating useful functions into double-network hydrogels can expand the portfolios of the hydrogels. We report the preparation of double-network metallopolymer hydrogels with remarkable hydration, antifouling, and antimicrobial properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!