Microdevice-based mechanical compression on living cells.

iScience

Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand.

Published: December 2022

Compressive stress enables the investigation of a range of cellular processes in which forces play an important role, such as cell growth, differentiation, migration, and invasion. Such solid stress can be introduced externally to study cell response and to mechanically induce changes in cell morphology and behavior by static or dynamic compression. Microfluidics is a useful tool for this, allowing one to mimic microenvironments in on-chip culture systems where force application can be controlled spatially and temporally. Here, we review the mechanical compression applications on cells with a broad focus on studies using microtechnologies and microdevices to apply cell compression, in comparison to off-chip bulk systems. Due to their unique features, microfluidic systems developed to apply compressive forces on single cells, in 2D and 3D culture models, and compression in cancer microenvironments are emphasized. Research efforts in this field can help the development of mechanoceuticals in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699986PMC
http://dx.doi.org/10.1016/j.isci.2022.105518DOI Listing

Publication Analysis

Top Keywords

mechanical compression
8
compression
5
microdevice-based mechanical
4
compression living
4
living cells
4
cells compressive
4
compressive stress
4
stress enables
4
enables investigation
4
investigation range
4

Similar Publications

Formulation development and scale-up of dutasteride liquisolid tablets.

Drug Dev Ind Pharm

January 2025

Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Krakow, Poland.

Introduction: Liquisolid (LS) technology is particularly advantageous for poorly water-soluble drugs administered in very low doses because of the improved dissolution rate and superior content uniformity. However, there is a lack of research papers describing the application of this concept on an industrial scale. Thus, we present trials conducted to develop tablets containing 0.

View Article and Find Full Text PDF

Pumice aggregates with low density and high porosity are widely used in lightweight concrete. The high water retention ability of pumice aggregates adversely affects the properties of fresh concrete. Additionally, pumice aggregates' inadequate mechanical strength and durability hinder concrete performance.

View Article and Find Full Text PDF

This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.

View Article and Find Full Text PDF

This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze-thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC.

View Article and Find Full Text PDF

Characterization of Fatigue Properties of Fiber-Reinforced Polymer Composites Based on a Multiscale Approach.

Polymers (Basel)

January 2025

Department of Mechanical Engineering, Hanyang University, 222 Wangsimri-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

This study presents a methodology for characterizing the constituent properties of composite materials by back-calculating from the laminate behavior under fatigue loading. Composite materials consist of fiber reinforcements and a polymer matrix, with the fatigue performance of the laminate governed by the interaction between these constituents. Due to the challenges in directly measuring the properties of individual fibers and the polymer matrix, a reverse-engineering approach was employed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!