The biological removal of antibiotic residue in the environment has earned great interest. This study presented the biodegradation of amoxicillin (AMX) using B. cereus C1 isolated from the catfish pond sludge in Vietnam. This AMX-degrading bacterial strain grew well in the range of temperatures between 25ΟC and 40ΟC under aerobic condition. In a culture medium containing nitrogen source of NH4Cl (1 g.L-1) alone, the bacterium showed a AMX degradation ability of 54%. The AMX degradation ability of this bacterial strain was the highest level of 94% in the culture medium with 1.5 g.L-1 of NH4Cl and 3 g.L-1 of glucose. B. cereus C1 exhibited a great antibiotic degradation capability on high AMX concentration of 250 μg.mL-1 of AMX with AMX removal efficiency of 84% in 16 h of cultivation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699968PMC
http://dx.doi.org/10.1016/j.heliyon.2022.e11688DOI Listing

Publication Analysis

Top Keywords

degradation ability
12
isolated catfish
8
catfish pond
8
pond sludge
8
sludge vietnam
8
bacterial strain
8
culture medium
8
nh4cl gl-1
8
amx degradation
8
amx
6

Similar Publications

The aim of this experiment was to investigate the effects of rumen fluid and molasses on the nutrient composition, fermentation quality, and microflora of Caragana korshinskii Kom. The trial included four treatments: a control group (CK) without additives and experimental groups supplemented with 7% rumen fluid (R), 4% molasses (M), and 7% rumen fluid + 4% molasses (RM). 15 days and 60 days of ensiling.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

In a series of studies on blood-brain barrier transportable peptides, a soybean dipeptide, Tyr-Pro, penetrated the mouse brain parenchyma after oral intake and improved short and long memory impairment in acute Alzheimer's model mice. Here, we aimed to clarify the anti-dementia effects of this peptide administered to SAMP8 mice prior to dementia onset. At the end of the 25-week protocol in 16-week-old SAMP8 mice, Tyr-Pro (10 mg/kg/day) significantly improved the reduced spatial learning ability compared with that in the control and amino acid (Tyr + Pro) groups as indicated by the results of Morris water maze tests conducted for five consecutive days.

View Article and Find Full Text PDF

Pluripotent stem cells possess a unique nuclear architecture characterized by a larger nucleus and more open chromatin, which underpins their ability to self-renew and differentiate. Here, we show that the nucleolus-specific RNA helicase DDX18 is essential for maintaining the pluripotency of human embryonic stem cells. Using techniques such as Hi-C, DNA/RNA-FISH, and biomolecular condensate analysis, we demonstrate that DDX18 regulates nucleolus phase separation and nuclear organization by interacting with NPM1 in the granular nucleolar component, driven by specific nucleolar RNAs.

View Article and Find Full Text PDF

ZAP is an antiviral protein that binds to and depletes viral RNA, which is often distinguished from vertebrate host RNA by its elevated CpG content. Two ZAP cofactors, TRIM25 and KHNYN, have activities that are poorly understood. Here, we show that functional interactions between ZAP, TRIM25 and KHNYN involve multiple domains of each protein, and that the ability of TRIM25 to multimerize via its RING domain augments ZAP activity and specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!