Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction: Statins are lipid-lowering drugs and starting treatment has been associated with DNA methylation changes at genes related to lipid metabolism. However, the longitudinal pattern of how statins affect DNA methylation in relation to lipid levels has not been well investigated.
Methods: We conducted an epigenetic association study in a longitudinal Swedish twin sample in previously reported lipid-related CpGs (cg10177197, cg17901584 and cg27243685). First, we applied a mixed-effect model to assess the association between blood lipids (total cholesterol (TC), low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol (HDL), total triglyceride (TG)) and DNA methylation. Then, we performed a piecewise latent linear-linear growth curve model (LGCM) to explore the long-term changing pattern of lipids and methylation in response to statin treatment. Finally, we used a bivariate autoregressive latent trajectory model with structured residuals (ALT-SR) to analyze the cross-lagged effects in different lipid-CpG pairs in statin users and non-users.
Results: We replicated the associations between TC, LDL, HDL and DNA methylation level in cg17901584 and cg27243685 (P values ranged from 4.70E-12 to 1.84E-04). From the piecewise LGCM, we showed that TC and LDL significantly decreased in statin users before treatment started and then remained stable. For non-statin users, we only found a slightly significant decreasing trend for TC and TG. We observed a similar dynamic pattern for methylation levels at cg27243685 and cg17901584. Before statin initiation, cg27243685 showed a significantly increasing trend and cg17901584 a decreasing trend, but post-treatment, there were no additional changes. From the ALT-SR model, we found TG levels to be significantly associated with the DNA methylation level of cg27243685 at the next measurement in statin users (estimate = 0.383, 95% CI: 0.173, 0.594, P value < 0.001).
Conclusions: Longitudinal blood lipid and DNA methylation levels change after statin treatment initiation, where the latter is mostly a response to alterations in lipid levels and not vice versa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706978 | PMC |
http://dx.doi.org/10.1186/s13148-022-01375-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!