Background: The emerging concepts of fetal-like reprogramming following tissue injury have been well recognized as an important cue for resolving regenerative mechanisms of intestinal epithelium during inflammation. We previously revealed that the remodeling of mesenchyme with collagen fibril induces YAP/TAZ-dependent fate conversion of intestinal/colonic epithelial cells covering the wound bed towards fetal-like progenitors. To fully elucidate the mechanisms underlying the link between extracellular matrix (ECM) remodeling of mesenchyme and fetal-like reprogramming of epithelial cells, it is critical to understand how collagen type I influence the phenotype of epithelial cells. In this study, we utilize collagen sphere, which is the epithelial organoids cultured in purified collagen type I, to understand the mechanisms of the inflammatory associated reprogramming. Resolving the entire landscape of regulatory networks of the collagen sphere is useful to dissect the reprogrammed signature of the intestinal epithelium.

Methods: We performed microarray, RNA-seq, and ATAC-seq analyses of the murine collagen sphere in comparison with Matrigel organoid and fetal enterosphere (FEnS). We subsequently cultured human colon epithelium in collagen type I and performed RNA-seq analysis. The enriched genes were validated by gene expression comparison between published gene sets and immunofluorescence in pathological specimens of ulcerative colitis (UC).

Results: The murine collagen sphere was confirmed to have inflammatory and regenerative signatures from RNA-seq analysis. ATAC-seq analysis confirmed that the YAP/TAZ-TEAD axis plays a central role in the induction of the distinctive signature. Among them, TAZ has implied its relevant role in the process of reprogramming and the ATAC-based motif analysis demonstrated not only Tead proteins, but also Fra1 and Runx2, which are highly enriched in the collagen sphere. Additionally, the human collagen sphere also showed a highly significant enrichment of both inflammatory and fetal-like signatures. Immunofluorescence staining confirmed that the representative genes in the human collagen sphere were highly expressed in the inflammatory region of ulcerative colitis.

Conclusions: Collagen type I showed a significant influence in the acquisition of the reprogrammed inflammatory signature in both mice and humans. Dissection of the cell fate conversion and its mechanisms shown in this study can enhance our understanding of how the epithelial signature of inflammation is influenced by the ECM niche.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9703763PMC
http://dx.doi.org/10.1186/s41232-022-00237-3DOI Listing

Publication Analysis

Top Keywords

collagen sphere
28
collagen type
20
collagen
13
fate conversion
12
epithelial cells
12
cell fate
8
fetal-like reprogramming
8
remodeling mesenchyme
8
type influence
8
murine collagen
8

Similar Publications

Alpha-ketoglutarate (αKG) dependent Lysyl hydroxylase (LH) is a critical enzyme in the post-translational conversion of lysine into hydroxylysine in collagen triple helix and telopeptide regions. Overexpression of LH increases collagen hydroxylation and covalent cross-linkage, causing fibrosis. Currently, no drugs are available to inhibit LH potentially.

View Article and Find Full Text PDF
Article Synopsis
  • Collagen fiber skeleton from animal skin is an optimal base for creating electronic skin (e-skin), but challenges arise from mismatched interfaces and limited conductive networks.
  • A new e-skin design incorporating dual conduction methods (using NaCl and conductive spheres) is developed, featuring a robust 3D conductive pathway and strong hydrogen bonding, resulting in high strength, conductivity, and sensing performance.
  • This innovative design not only enhances sensitivity and environmental stability but also provides benefits like moisture retention and anti-freezing, positioning IECS as a versatile component for applications in wearable electronics and sensory technology.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used human stem cell-derived heart cells to create cardiac spheroids and exposed them to patient plasma from years after pregnancy to assess how gestational hypertension (GH) and preeclampsia (PE) affect heart cell function and viability.
  • * Results showed that both GH and PE increased heart cell contraction rates, with PE also boosting heart cell shortening, while GH reduced cell viability; a proteomic analysis revealed specific proteins linked to heart issues in both conditions.
View Article and Find Full Text PDF

Immune checkpoint blockade-based cancer immunotherapy is an effective tool for cancer treatment. PD-1/PD-L1 blockade, however, is limited by a low response rate and adaptive resistance. A growing body of studies has shown that the high stromal content dense with extracellular matrix plays a significant role in immune checkpoint blockade resistance as well as T cell exclusion.

View Article and Find Full Text PDF

Enhancing intrinsic TGF-β signaling via heparan sulfate glycosaminoglycan regulation to promote mesenchymal stem cell capabilities and chondrogenesis for cartilage repair.

Int J Biol Macromol

December 2024

Department of Animal Science and Technology, National Taiwan University, Taipei 106, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 106, Taiwan. Electronic address:

Osteoarthritis burdens patients due to the limited regenerative capacity of chondrocytes. Traditional cartilage repair often falls short, necessitating innovative approaches. Mesenchymal stem cells (MSCs) show promise for regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!