Diabetes mellitus (DM) affects bone metabolism and causes osteoporosis. Musashi 1 (MSI1), a member of the Musashi family, regulates protein expression by targeting protein mRNA and has been reported to play an important role in osteogenic differentiation. Therefore, this paper attempts to explore the role of MSI1 in diabetic osteoporosis and discussing its specific mechanism. The glucose concentration for high glucose (HG) and control MC3T3-E1 cells were 30 and 5.5 mM. MC3T3-E1 cells induced by high glucose (HG) were used to simulate diabetic osteoporosis in vivo. The interaction between MSI1 and microtubule actin crosslinking factor 1 (MACF1) was confirmed by RNA Immunoprecipitation (RIP). The mRNA and protein expressions of MSI1 and MACF1 in MC3T3-E1 cells and HG-induced MC3T3-E1 cells after indicated transfection were tested by Real-time quantitative polymerase chain reaction (RT-qPCR) assay and western blot. After transfection, the proliferation, apoptosis, and osteogenic differentiation of HG-induced MC3T3-E1 cells were detected by cell counting kit (CCK)-8, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), alkaline phosphatase (ALP) activity assay, and alizarin red staining. The expression of Wnt/β-catenin signaling pathway-related proteins in HG-induced MC3T3-E1 cells after transfection was detected by western blot. This work shows that MSI1 can combine with MACF1. The expression of MSI1 and MACF1 was increased in HG-induced MC3T3-E1 cells. Upregulation of MSI1 promoted the proliferative and differentiative capabilities, but inhibited the apoptosis of HG-insulted MC3T3-E1 cells, which could be reversed by MACF1 knockdown. MSI1 stabilizes MACF1 to suppress apoptosis and promote osteogenic differentiation in HG-induced MC3T3-E1 cells by inhibiting Wnt/β-catenin signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12033-022-00617-7 | DOI Listing |
J Biomed Mater Res A
January 2025
Marquette University School of Dentistry, Milwaukee, Wisconsin, USA.
In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun 130033, China. Electronic address:
This study explored a novel modification method for porous polyetheretherketone (PEEK) implants using a biomimetic coating to achieve synergistic enhancement of vascularization and bone regeneration. Inspired by the natural extracellular matrix (ECM) structure (consists of growth factors and matrix proteins), a biomimetic dual-factor coating capable of releasing bone morphogenetic protein-2 (BMP-2) and fibronectin (FN) was coated on the surface of 3D-printed porous PEEK scaffolds using polydopamine (PDA) as a binder. Experiments conducted with MC3T3-E1 cells or HUVECs in co-culture with scaffolds revealed that the biomimetic coating not only synergically promoted cell migration, adhesion and proliferation, but also enhanced angiogenesis and osteogenic differentiation simultaneously in vivo.
View Article and Find Full Text PDFFront Nutr
December 2024
School of Ocean and Tropical Medicine. Guangdong Medical University, Zhanjiang, Guangdong, China.
Introduction: The objective of this study was to improve the economic value of the processed by-products of farmed miiuy croaker () by evaluating the nutrient composition and osteogenic activity of its bones. We prepared bone peptides (MMBP) and analyzed their osteogenic potential.
Methods: We assessed the osteogenic activity of MMBP by molecular docking, MC3T3-E1 cell proliferation assay and zebrafish growth model, and evaluated its effect on osteoporosis (OP) using a retinoic acid-induced osteoporosis rat model.
J Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital, Affiliated to Anhui Medical University No. 246 of Heping Road, Yaohai District Hefei Anhui 230011 China
: to address the issue of burst drug release in antibiotic-loaded poly(methyl methacrylate) (PMMA) bone cement (ALBC), this study involved preparation of novel PMMA bone cement and determination of its antibacterial activity, biocompatibility, compressive properties, maximum temperature, and setting time. : a novel acrylic monomer, which contains the 3,4-dichloro-5-hydroxyfuran-2(5)-one (DHF), was synthesized and utilized to develop non-leaching antibacterial PMMA bone cement (NLBC), designated as DHF-methacrylic acid (DHF-MAA) bone cement. In the preparation of this bone cement, DHF-MAA served as a key component of the liquid phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!