Hemocytes in the hemolymph of insects perform innate immunity, but systematic studies to compare immunotoxicity of pesticides on hemocytes are still few. In this study, an insect hemocyte system was used to assess the impact of pesticides with different modes of action, which included loss of cell viability, inhibition of hemophagocytosis, and reduction of nitric oxide synthase (NOS) activity. Results showed that piericidin A was the most cytotoxic to hemocytes, chlorfluazuron and hexaflumuron were the next. Also, piericidin A, chlorfenapyr, and fipronil had strong inhibitory effects on hemophagocytosis, and the effects of piericidin A and chlorfenapyr were persistent, while that of fipronil was short-lived. Moreover, fenoxycarb and hexaflumuron selectively inhibited granulocyte phagocytosis, tebufenozide only showed inhibition on plasmatocyte phagocytosis, but both inhibitory effects were transient. Furthermore, fenoxycarb and hexaflumuron showed a short-term strong inhibitory effect on the activity of NOS, chlorfenapyr and piericidin A showed a weak induction of NOS activity, while other pesticides exhibited a strong induction. Taken together, piericidin A was the most toxic and imidacloprid was the least toxic to hemocytes, and the alterations in hemocyte functions compromised immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11626-022-00738-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!