The existing catalyst/initiator systems and methodologies used for the synthesis of polymers can access only a few cyclic polymers composed entirely of a single monomer type, and the synthesis of such authentic cyclic polar vinyl polymers (acrylics) devoid of any foreign motifs remains a challenge. Here we report that a tethered B-P-B trifunctional, intramolecular frustrated Lewis pair catalyst enables the synthesis of an authentic cyclic acrylic polymer, cyclic poly(γ-methyl-α-methylene-γ-butyrolactone) (c-PMMBL), from the bio-based monomer MMBL. Detailed studies have revealed an initiation and propagation mechanism through pairwise monomer enchainment enabled by the cooperative and synergistic initiator/catalyst sites of the trifunctional catalyst. We propose that macrocyclic intermediates and transition states comprising two catalyst molecules are involved in the catalyst-regulated ring expansion and eventual cyclization, forming authentic c-PMMBL rings and concurrently regenerating the catalyst. The cyclic topology of the c-PMMBL polymers imparts an ~50 °C higher onset decomposition temperature and a much narrower degradation window compared with their linear counterparts of similar molecular weight and dispersity, while maintaining high chemical recyclability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41557-022-01097-7 | DOI Listing |
BMC Oral Health
January 2025
Faculty of Dentistry, Basic Medical Sciences Department, Ankara University, Ankara, 06560, Turkey.
Background: This study aimed to comparatively evaluate the effects of different cavity conditioners on internal adaptation (IA) of glass ionomer-based restorative materials applied to primary teeth.
Methods: 80 extracted primary second molar teeth were randomly assigned to four different cavity conditioner groups [10% polyacrylic acid, 20% polyacrylic acid, 17% ethylene diamine tetraacetic acid (EDTA), 35% phosphoric acid]. Class V cavities were prepared on the buccal surfaces and relevant cavity conditioners were applied, and the samples in each cavity conditioner group were randomly assigned to glass hybrid (GHR) or conventional glass ionomer restoratives (CGIR).
Am J Dent
December 2024
Department of Operative Dentistry, Federal University of Santa Catarina, Brazil.
Purpose: To evaluate the color match and stability of single-shade resin-based composites (RBCs) in Class V restorations before and after ultra-violet light artificial aging.
Methods: Acrylic resin teeth of A1 and A3 were randomly assigned into seven groups to be restored with single-shade RBCs and universal-shade RBCs, shades A1 and A3. Standardized Class V cavities were restored using RBC and underwent accelerated aging for 480 hours.
Am J Dent
December 2024
Department of Prosthodontics and Periodontics, University of São Paulo (USP), Bauru, Brazil,
Purpose: This mini-review discusses the clinical implication of respiratory pathogens in the biofilm on acrylic resin removable dentures in the elderly.
Methods: A search was conducted using the keywords: "dentures", " acrylic resin", "biofilm", "pneumonia", "elderly", "respiratory pathogens", and "respiratory diseases" in databases PubMed/Medline, Lilacs, SciELO and textbooks between 1999 and 2024.
Results: The elderly are more susceptible to chronic diseases and/or life-threatening infections because of senescence itself and functional and degenerative alterations.
Pharmaceutics
December 2024
Department of Urology and Department of Nuclear Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China.
Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).
Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.
Polymers (Basel)
December 2024
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
In this study, we present novel, vitrimeric and biobased scaffolds that are designed for hard tissue applications, composed of acrylated, epoxidized soybean oil (AESO) and reinforced with bioactive glass that is Tellurium doped (BG-Te) and BG-Te silanized, to tune the mechanical and antibacterial properties. The manufacture's method consisted of a DLP 3D-printing method, enabling precise resolution and the possibility to manufacture a hollow and complex structure. The resin formulation was optimized with a biobased, reactive diluent to adjust the viscosity for an optimal 3D-printing process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!