Anopheles minimus is an important malaria vector throughout its wide geographic range across Southeast Asia. Genome sequencing could provide important insights into the unique malaria transmission dynamics in this region, where many vector species feed and rest outdoors. We describe results from a study using Illumina deep whole-genome sequencing of 302 wild-caught An. minimus collected from three Cambodian provinces over several years (2010, 2014, 2016) and seasons to examine the level of population structure and genetic diversity within this species. These specimens cluster into four distinct populations of An. minimus s.s., with two populations overlapping geographically. We describe the underlying genetic diversity and divergence of these populations and investigated the genetic variation in genes known to be involved in insecticide resistance. We found strong signals of selection within these An. minimus populations, most of which were present in the two Northeastern Cambodian populations and differ from those previously described in African malaria vectors. Cambodia is the focus of the emergence and spread of drug-resistant malaria parasites, so understanding the underlying genetic diversity and resilience of the vectors of these parasites is key to implementing effective malaria control and elimination strategies. These data are publicly available as part of the MalariaGEN Vector Observatory, an open access resource of genome sequence data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705317PMC
http://dx.doi.org/10.1038/s42003-022-04259-yDOI Listing

Publication Analysis

Top Keywords

genetic diversity
12
populations minimus
8
minimus populations
8
underlying genetic
8
populations
6
minimus
5
malaria
5
population genomics
4
genomics reveal
4
reveal distinct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!