A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Numerical investigation on the role of check dams with bottom outlets in debris flow mobility by 2D SPH. | LitMetric

Numerical investigation on the role of check dams with bottom outlets in debris flow mobility by 2D SPH.

Sci Rep

Department of Hydraulic Engineering, College of Civil Engineering, Tongji University, Shanghai, 200092, China.

Published: November 2022

Check dams with bottom outlets are widely used in debris flow gullies to minimize the damage caused by debris flows. However, the bottom size is often based on empirical criteria due to the lack of knowledge of the interaction between the debris flow and the check dam with the bottom outlet. In this study, the interaction between a viscous debris flow and check dams with bottom outlets is investigated via flume tests using 2D smoothed particle hydrodynamics. The normalized height of the bottom outlet is varied from 0 to 1, and slope angles from 15 to 35° are considered. Based on the numerical results, the jump height decays with the increasing normalized height of the bottom outlet and this trend can be approximated by a power law function. When the normalized height of the bottom outlet is less than 0.15, the performance is similar to that of a closed check dam. The flow regulation and sediment trapping functions of the check dam may fail when the normalized height of the bottom outlet is greater than 0.6. These results show that the energy breaking, flow regulation, and sediment trapping functions of check dams with bottom outlets operate well when the normalized height of the bottom outlet is in the range 0.15-0.6. Even if model limitations require further efforts to validate the findings of this study, they provide a basis for the rational design of check dams with bottom outlets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705551PMC
http://dx.doi.org/10.1038/s41598-022-24962-4DOI Listing

Publication Analysis

Top Keywords

bottom outlet
24
check dams
20
dams bottom
20
bottom outlets
20
normalized height
20
height bottom
20
debris flow
16
bottom
12
check dam
12
check
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!