Touch-like phantom limb sensations can be elicited through targeted transcutaneous electrical nerve stimulation (tTENS) in individuals with upper limb amputation. The corresponding impact of sensory stimulation on cortical activity remains an open question. Brain network research shows that sensorimotor cortical activity is supported by dynamic changes in functional connections between relevant brain regions. These groups of interconnected regions are functional modules whose architecture enables specialized function and related neural processing supporting individual task needs. Using electroencephalographic (EEG) signals to analyze modular functional connectivity, we investigated changes in the modular architecture of cortical large-scale systems when participants with upper limb amputations performed phantom hand movements before, during, and after they received tTENS. We discovered that tTENS substantially decreased the flexibility of the default mode network (DMN). Furthermore, we found increased interconnectivity (measured by a graph theoretic integration metric) between the DMN, the somatomotor network (SMN) and the visual network (VN) in the individual with extensive tTENS experience. While for individuals with less tTENS experience, we found increased integration between DMN and the attention network. Our results provide insights into how sensory stimulation promotes cortical processing of combined somatosensory and visual inputs and help develop future tools to evaluate sensory combination for individuals with amputations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705529PMC
http://dx.doi.org/10.1038/s41598-022-24368-2DOI Listing

Publication Analysis

Top Keywords

sensory stimulation
12
upper limb
12
limb amputations
8
cortical large-scale
8
large-scale systems
8
somatosensory visual
8
visual inputs
8
cortical activity
8
ttens experience
8
cortical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!