Surface waters of the oceans carry large amounts of material, including sediment grains, plankton organisms, and ice crystals, as well as pollutants, e.g., oil and plastic. Transport and spatio-temporal distribution of this material depend on its properties and on the dynamical processes in the ocean mixed layer-currents, waves, turbulence, and convective mixing-acting at a wide range of scales. Due to its importance for marine physics, biogeochemistry and ecology, substantial research efforts have been invested in recent years in observations and modelling of ocean material transport, especially in the context of marine plastic pollution. Nevertheless, many important questions remain unanswered. In this work, numerically simulated trajectories of surface-floating particles in the period 1993-2020 are used to analyse typical and anomalous transport pathways in the northern North Atlantic and the Arctic Ocean. Model validation is performed based on additional simulations of 387 buoy tracks from the International Arctic Buoy Programme in the years 2014-2020. The trajectories are computed based on surface currents from a hydrodynamic model and Stokes drift from a spectral wave model. It is shown that due to high amplitudes of Stokes drift (comparable with wind-induced currents in ice-free parts of the domain of study), combined with high directional variability, the drifting paths are substantially modified in ice-free regions, underlying the important role of wave-induced currents in surface material transport. A statistical analysis of [Formula: see text] trajectories reveals patterns of connections between nearshore locations in the domain of study, the associated drift times and path sinuosity. Seasonal variability of transport, which differs between the Arctic Ocean and the North Atlantic, is found for typical transport routes following the larger-scale circulation patterns. Crucially, in both sub-domains episodic, but very strong transport events between otherwise isolated locations occur, associated with anomalous atmospheric circulation and, arguably, providing 'windows of opportunity' for dispersal of various organisms to new locations. It is shown for two examples in the North Atlantic region that an unusual combination of atmospheric circulation indices explains the anomalous transport, thus providing a predictive tool for future events. In the Arctic, analogous phenomena are modified by the state of the sea ice cover.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705288 | PMC |
http://dx.doi.org/10.1038/s41598-022-25008-5 | DOI Listing |
R Soc Open Sci
January 2025
Institute of Marine Research (IMR), PO Box 1870, Bergen N-5817, Norway.
When haemoglobin genotyping was implemented in the early 1960s to investigate population genetic structure in Atlantic cod (), it became one of the first molecular genetic markers deployed in fisheries research worldwide. However, its suitability was questioned due to its potential for selection. While the issue of neutrality concerned the first population geneticists, markers under selection are now routinely used to study population genetic structure.
View Article and Find Full Text PDFNat Commun
January 2025
Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
The Atlantic Meridional Overturning Circulation (AMOC) is crucial for global ocean carbon and heat uptake, and controls the climate around the North Atlantic. Despite its importance, quantifying the AMOC's past changes and assessing its vulnerability to climate change remains highly uncertain. Understanding past AMOC changes has relied on proxies, most notably sea surface temperature anomalies over the subpolar North Atlantic.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, Dalhousie University, Halifax, NS, Canada.
Baleen whales are among the largest marine megafauna, and while mostly well-protected from direct exploitation, they are increasingly affected by vessel traffic, interactions with fisheries, and climate change. Adverse interactions, notably vessel strikes and fishing gear entanglement, often result in distress, injury, or death for these animals. In Atlantic Canadian waters, such negative interactions or 'incidents' are consistently reported to marine animal response organizations but have not yet been analyzed relative to the spatial distribution of whales and vessels.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA.
Large-scale, pan-cancer analysis is enabled by data driven knowledge bases that link tumor molecular profiles with phenotypes. A debilitating cancer-related phenotype is skeletal muscle loss, or cachexia, which occurs partly from tumor products secreted into circulation. Using the LinkedOmicsKB knowledge base assembled from the Clinical Proteomics Tumor Analysis Consortium proteogenomic analysis, along with catalogs of human secretome proteins, ligand-receptor pairs and molecular signatures, we sought to identify candidate pan-cancer proteins secreted to blood that could regulate skeletal muscle phenotypes in multiple solid cancers.
View Article and Find Full Text PDFJ Phycol
January 2025
Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil.
The filamentous red algal genus Bryocladia was recently deeply revised based on molecular and morphological data. However, data from the Southwestern Atlantic Ocean are scarce. Here, we provide a phylogenetic study of Bryocladia representatives from the Brazilian coast with new additions to the genus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!