Brassinolide (BR) is a sterol compound, which can regulate plant seed germination, flowering, senescence, tropism, photosynthesis, stress resistance, and is closely related to other signaling molecules. This study aimed to evaluate the ability of soaking with BR to regulate growth quality at rice seedling stage under salt stress. Results demonstrated that salt stress increases the contents of ROS, MDA, Na and ABA, reduces the the SPAD value, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), maximum fluorescence (Fm), variable fluorescence (Fv), the effective photochemical efficiency of PSII (Fv/Fo) and the maximum photochemical efficiency of PSII (Fv/Fm), reduces the biomass production and inhabits plant growth. All of these responses were effectively alleviated by BR soaking treatment. Soaking with BR could increase the activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and the contents of ascorbic acid, glutathione as well as soluble protein and proline, while BR soaking treatment inhibited the accumulation of ROS and reduced the content of MDA. BR soaking significantly reduced the contents of Na and increased the contents of K and Ca, indicating that soaking with BR is beneficial to the excretion of Na, the absorption of K and Ca and the maintenance of ion balance in rice seedlings under salt stress. BR also maintained endogenous hormone balance by increasing the contents of indoleacetic acid (IAA), zeatin (ZT), salicylic acid (SA), and decreasing the ABA content. Soaking with BR significantly increased the SPAD value, Pn and Tr and enhanced the Fm, Fv/Fm and Fv/Fo of rice seedlings under NaCl stress, protected the photosythetic system of plants, and improved their biomass. It is suggested that BR was beneficial to protect membrane lipid peroxidation, the modulation of antioxidant defense systems, ion balance and endogenous hormonal balance with imposition to salt stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9705366 | PMC |
http://dx.doi.org/10.1038/s41598-022-24747-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!