We investigated the neuroprotective effects of deca nano-graphene oxide (daNGO) against reactive oxygen species (ROS) and inflammation in the human neuroblastoma cell line SH-SY5Y and in the 6-hydroxydopamine (6-OHDA) induced Parkinsonian rat model. An MTT assay was performed to measure cell viability in vitro in the presence of 6-OHDA and/or daNGO. The intracellular ROS level was quantified using 2',7'-dichlorofluorescein diacetate. daNGO showed neuroprotective effects against 6-OHDA-induced toxicity and also displayed ROS scavenging properties. We then tested the protective effects of daNGO against 6-OHDA induced toxicity in a rat model. Stepping tests showed that the akinesia symptoms were improved in the daNGO group compared to the control group. Moreover, in an apomorphine-induced rotation test, the number of net contralateral rotations was decreased in the daNGO group compared to the control group. By immunofluorescent staining, the animals in the daNGO group had more tyrosine hydroxylase-positive cells than the controls. By anti-Iba1 staining, 6-OHDA induced microglial activation showed a significantly decrease in the daNGO group, indicating that the neuroprotective effects of graphene resulted from anti-inflammation. In conclusion, nanographene oxide has neuroprotective effects against the neurotoxin induced by 6-OHDA on dopaminergic neurons. [BMB Reports 2023; 56(3): 202-207].

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10068341PMC
http://dx.doi.org/10.5483/BMBRep.2022-0137DOI Listing

Publication Analysis

Top Keywords

neuroprotective effects
16
dango group
16
6-ohda induced
12
nano-graphene oxide
8
reactive oxygen
8
oxygen species
8
dango
8
rat model
8
group compared
8
compared control
8

Similar Publications

Cholecystokinin (CCK) is a major neuropeptide in the brain that functions as a neurotransmitter, hormone, and growth factor. The peptide and its receptors are widely expressed in the brain. CCK signaling modulates synaptic plasticity and can improve or impair memory formation, depending on the brain areas studies and the receptor subtype activated.

View Article and Find Full Text PDF

Neurodegenerative diseases (NDs) are caused by progressive neuronal death and cognitive decline. Epigallocatechin 3-gallate (EGCG) is a polyphenolic molecule in green tea as a neuroprotective agent. This review evaluates the therapeutic effects of EGCG and explores the molecular mechanisms that show its neuroprotective properties.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke, and the neuroprotective effects of nimodipine following SAH have been well-documented. Sirtuin 3 (SIRT3), a mitochondrial nicotinamide adenine dinucleotide (NAD)-dependent deacetylase, plays a significant role in mitigating oxidative stress in various neurodegenerative conditions. However, the role of SIRT3 in the neuroprotective mechanisms of nimodipine after SAH remains unclear.

View Article and Find Full Text PDF

Perioperative neurocognitive disorders (PND) is a common complication affecting the central nervous system, commonly induced by anesthesia and surgical procedures. PND has garnered considerable attention in recent years, not only due to its high morbidity but also its negative impact on patient prognosis, such as increased rates of dementia and mortality. Sevoflurane, a common volatile anesthetic in clinical practice, is increasingly linked to being a potential risk factor for PND with prolonged inhalation, yet effective prevention and treatment methods remain elusive.

View Article and Find Full Text PDF

Edaravone Mitigates Hippocampal Neuronal Death and Cognitive Dysfunction by Upregulating BDNF Expression in Neonatal Hypoxic-Ischemic Rats.

Int J Dev Neurosci

February 2025

Department of Digestive and Nutrition, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.

Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe neurological injury during infancy, often resulting in long-term cognitive deficits. This study aimed to investigate the neuroprotective effects of Edaravone (EDA), a free radical scavenger, and elucidate the potential role of brain-derived neurotrophic factor (BDNF) in mediating these effects in neonatal HIE rats. Using the Rice-Vannucci model, HIE was induced in neonatal rats, followed by immediate administration of EDA after the hypoxic-ischemic insult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!