Brain PET Imaging: Approach to Cognitive Impairment and Dementia.

PET Clin

Department of Radiology, Weill Cornell Medicine, NewYork-Presbyterian Hospital, 525 East 68th Street, Starr Pavilion, Box 141, New York, NY 10065, USA. Electronic address:

Published: January 2023

Alzheimer disease (AD) is the most common cause of dementia, accounting for 50% to 60% of cases and affecting nearly 6 million people in the United States. Definitive diagnosis requires either antemortem brain biopsy or postmortem autopsy. However, clinical neuroimaging has been playing a greater role in the diagnosis and management of AD, and several PET tracers approach the sensitivity of tissue diagnosis in identifying AD pathologic condition. This review will focus on the utility of PET imaging in the setting of cognitive impairment, with an emphasis on its role in the diagnosis of AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9713600PMC
http://dx.doi.org/10.1016/j.cpet.2022.09.006DOI Listing

Publication Analysis

Top Keywords

pet imaging
8
cognitive impairment
8
role diagnosis
8
brain pet
4
imaging approach
4
approach cognitive
4
impairment dementia
4
dementia alzheimer
4
alzheimer disease
4
disease common
4

Similar Publications

Background/objectives: The purpose of this study was to develop the gemcitabine-loaded drug-eluting beads (G-DEBs) for transarterial chemoembolization (TACE) in rabbit renal tumors and to evaluate their antitumor effect using 2-deoxy-2-[(18)F]fluoro-D-glucose positron emission tomography/X-ray computed tomography (F-FDG PET/CT).

Methods: DEBs were prepared by polyvinyl alcohol-based macromer crosslinked with -acryl tyrosine and ,'-methylenebis(acrylamide). Gemcitabine was loaded through ion change to obtain G-DEBs.

View Article and Find Full Text PDF

Renal cell carcinoma is one of the most aggressive urogenital malignancies, with an increasing number of cases worldwide. The majority of cases are diagnosed at an advanced stage, as this form of growth is typically silent. An accurate evaluation of the extent of the disease is crucial for selecting the most appropriate treatment approach.

View Article and Find Full Text PDF

Development of a PET Probe Targeting Bromodomain and Extra-Terminal Proteins for In Vitro and In Vivo Visualization.

Pharmaceuticals (Basel)

December 2024

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.

Bromodomain and extra-terminal (BET) proteins are critical regulators of gene transcription, as they recognize acetylated lysine residues. The BD1 bromodomain of BRD4, a member of the BET family, has emerged as a promising therapeutic target for various diseases. This study aimed to develop and evaluate a novel C-11 labeled PET radiotracer, [C]YL10, for imaging the BD1 bromodomain of BRD4 in vivo.

View Article and Find Full Text PDF

Visualizing the Tumor Microenvironment: Molecular Imaging Probes Target Extracellular Matrix, Vascular Networks, and Immunosuppressive Cells.

Pharmaceuticals (Basel)

December 2024

Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan.

The tumor microenvironment (TME) is a critical factor in cancer progression, driving tumor growth, immune evasion, therapeutic resistance, and metastasis. Understanding the dynamic interactions within the TME is essential for advancing cancer management. Molecular imaging provides a non-invasive, real-time, and longitudinal approach to studying the TME, with techniques such as positron emission tomography (PET), magnetic resonance imaging (MRI), and fluorescence imaging offering complementary strengths, including high sensitivity, spatial resolution, and intraoperative precision.

View Article and Find Full Text PDF

Florbetaben (FBB) is a radiopharmaceutical approved by the FDA and EMA in 2014 for the positron emission tomography (PET) imaging of brain amyloid deposition in patients with cognitive impairment who are being evaluated for Alzheimer's disease (AD) or other causes of cognitive decline. Initially, the clinical adoption of FBB PET faced significant barriers, including reimbursement challenges and uncertainties regarding its integration into diagnostic clinical practice. This review examines the progress made in overcoming these obstacles and describes the concurrent evolution of the diagnostic landscape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!