Tumor-associated macrophages (TAMs) play an essential role in tumor progression, metastasis, and antitumor immunity. Ferroptosis has attracted extensive attention for its lethal effect on tumor cells, but the role of ferroptosis in TAMs and its impact on tumor progression have not been clearly defined. Using transgenic mouse models, this study determines that xCT-specific knockout in macrophages is sufficient to limit tumorigenicity and metastasis in the mouse HCC models, achieved by reducing TAM recruitment and infiltration, inhibiting M2-type polarization, and activating and enhancing ferroptosis activity within TAMs. The SOCS3-STAT6-PPAR-γ signaling may be a crucial pathway in macrophage phenotypic shifting, and activation of intracellular ferroptosis is associated with GPX4/RRM2 signaling regulation. Furthermore, that xCT-mediated macrophage ferroptosis significantly increases PD-L1 expression in macrophages and improves the antitumor efficacy of anti-PD-L1 therapy is unveiled. The constructed Man@pSiNPs-erastin specifically targets macrophage ferroptosis and protumoral polarization and combining this treatment with anti-PD-L1 exerts substantial antitumor efficacy. xCT expression in tumor tissues, especially in CD68+ macrophages, can serve as a reliable factor to predict the prognosis of HCC patients. These findings provide further insight into targeting ferroptosis activation in TAMs and regulating TAM infiltration and functional expression to achieve precise tumor prevention and improve therapeutic efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9839855 | PMC |
http://dx.doi.org/10.1002/advs.202203973 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFNutr Neurosci
January 2025
Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
Background: Recent studies have shown that ferroptosis, a newly identified regulated cell death characterized by increased lipid peroxidation and accumulation of toxic lipid peroxides, is closely related to the pathophysiological processes of nervous system diseases which can be inhibited with iron chelators, lipophilic antioxidants, and lipid peroxidation inhibitors.
Objective: To review the current evidence on the efficacy of various natural polyphenols in nervous system injury.
Methods: The data selected for this review were collected by searching the MEDLINE/PubMed, Web of Science, Scopus, and Google Scholar database for articles published in English between 2000 and 2024 using the following terms: cell death, regulated cell death, ferroptosis, lipid peroxides, iron, and glutathione peroxidase.
Mol Cancer
January 2025
National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
Drug resistance is a common challenge in clinical tumor treatment. A reduction in drug sensitivity of tumor cells is often accompanied by an increase in autophagy levels, leading to autophagy-related resistance. The effectiveness of combining chemotherapy drugs with autophagy inducers/inhibitors has been widely confirmed, but the mechanisms are still unclear.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
Background: Low-grade glioma (LGG) is a primary brain tumor with relatively low malignancy. NCOA4 is a key regulator of ferritinophagy-related processes and is involved in the occurrence and development of many cancers. However, the role of NCOA4 in LGG remains poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint, Guangzhou, 510000, China.
Cuproptosis, a recently discovered form of cell death, has emerged as a crucial player in tumor development, although its role in uterine corpus endometrial carcinoma (UCEC) remains inadequately explored. This study aims to identify prognostically relevant cuproptosis-related genes in endometrial cancer. Cuproptosis-related genes were sourced from previously published studies and the FerrDb database.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!