A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Reduced expression of APLP2 in spinal GABAergic inhibitory neurons contributed to nerve injury-induced microglial activation and pain sensitization. | LitMetric

The amyloid precursor protein (APP) is critical for the pathogenesis of Alzheimer's disease (AD). The AD patients usually have lower pain sensitivity in addition to cognitive impairments. However, considerably less is known as yet about the role of APP and its two mammalian homologues, amyloid precursor-like protein 1 and 2 (APLP1, APLP2), in spinal processing of nociceptive information. Here we found that all APP family members were present in spinal cord dorsal horn of adult male C57BL/6J mice. Peripheral nerve injury specifically reduced the expression of spinal APLP2 that correlated with neuropathic mechanical allodynia. The loss of APLP2 was confined to inhibitory GABAergic interneurons. Targeted knockdown of APLP2 in GABAergic interneurons of GAD2-Cre mice evoked pain hypersensitivity by means of microglia activation. Our data showed that GABAergic terminals expressed APLP2, a putative cell adhesion protein that interacted with microglia-specific integrin molecule CD11b. Knocking down APLP2 in GAD2-positive neurons to disrupt the trans-cellular interaction led to microglia-dependent pain sensitization. Our data thus revealed an important role of APLP2 for GABAergic interneurons to control microglial activity and pain sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropharm.2022.109334DOI Listing

Publication Analysis

Top Keywords

gabaergic interneurons
12
reduced expression
8
aplp2
8
aplp2 spinal
8
pain sensitization
8
pain sensitivity
8
aplp2 gabaergic
8
gabaergic
5
pain
5
expression aplp2
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!