Several modifications in the glioblastoma genes are caused by epigenetic modifications, which are crucial in appropriate developmental processes such as self-renewal and destiny determination of neural stem cells. Poly (ADP-ribose)polymerase (PARP) is an essential cofactor involved in DNA repair as well as several other cellular functions such as transcription and chromatin shape modification. Inhibiting PARP has evolved for triggering cell damage in cancerous cells when paired with certain other anticancer drugs including temozolomide (TMZ). PARP1 is involved with in base excision repair (BER) pathway, however its functionality differs across types of tumours. Epigenomics as well as chromosomal statistics have contributed to the growth of main subgroups of glioma, which serve as foundation for the categorization of central nervous system (CNS) tumours as well as a unique classification based only on DNA methylation information, which demonstrates extraordinary diagnostic accuracy. Unfortunately, not all patients respond to PARP inhibitors (PARPi), and there is no way to anticipate who will and who will not. In this field, PARPi are one of the innovative medicines currently being explored. As a result, cancer cells that also have a homologous recombination defect become fatal synthetically. As well as preparing the tumour microenvironment for immunotherapy, PARPi may enhance the lethal effects of chemotherapy and radiotherapy. This article analyzes the justification and clinical evidence for PARPi in glioma to offer potential therapeutic approaches. Despite the effectiveness of these targeted drugs, researchers have looked into a number of resistance mechanisms as well as the growing usage of PARPi in clinical practice for the treatment of various malignancies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2022.175424 | DOI Listing |
G3 (Bethesda)
January 2025
Infectious Disease Epidemiology and Analytics G5 Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France.
Genetic studies of Plasmodium parasites increasingly feature relatedness estimates. However, various aspects of malaria parasite relatedness estimation are not fully understood. For example, relatedness estimates based on whole-genome-sequence (WGS) data often exceed those based on sparser data types.
View Article and Find Full Text PDFPulmonology
December 2025
Department of Allergology, Institute of Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
Rhinitis is a common comorbidity in patients with asthma. However, the frequency of underreported rhinitis in asthma is not known. In this study, we aimed to assess the characteristics of patients with self-reported asthma and no self-reported rhinitis, as well as the extent of the underreporting of rhinitis.
View Article and Find Full Text PDFPulmonology
December 2025
Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Hearth, Rome, Italy.
New ultrathin bronchoscopes (UTBs) enable the inspection and biopsy of small airways, potentially offering diagnostic advantages in sarcoidosis. In this prospective study, patients with suspected sarcoidosis underwent airway inspection with a UTB. Observed airway abnormalities were categorised into six predefined patterns.
View Article and Find Full Text PDFElife
January 2025
Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, United States.
Sensory experience during developmental critical periods has lifelong consequences for circuit function and behavior, but the molecular and cellular mechanisms through which experience causes these changes are not well understood. The antennal lobe houses synapses between olfactory sensory neurons (OSNs) and downstream projection neurons (PNs) in stereotyped glomeruli. Many glomeruli exhibit structural plasticity in response to early-life odor exposure, indicating a general sensitivity of the fly olfactory circuitry to early sensory experience.
View Article and Find Full Text PDFDalton Trans
January 2025
CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 No. 1465, La Plata (1900), Argentina.
In this work, we evaluated the anticancer activity of compounds 1 (mononuclear) and 2 (dinuclear) copper(II) coordination compounds derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L) over MDA-MB-231 Triple-negative breast cancer (TNBC) cells, and compared their activities with that of a newly synthesized, protonated, dinuclear analogue of 2 (complex 3). Here, we report the synthesis of compound 3 and it has been characterized in the solid state (X-ray diffraction, FTIR) and in solution (EPR, UV-Vis, ESI) as well as its electrochemical profile. Complexes 1-3 impaired cell viability from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!