Gα13, a heterotrimeric G protein α subunit of the G12/13 subfamily, is an oncogenic driver in multiple cancer types. Unlike other G protein subfamilies that contribute to cancer progression via amino acid substitutions that abolish their deactivating, intrinsic GTPase activity, Gα13 rarely harbors such mutations in tumors and instead appears to stimulate aberrant cell growth via overexpression as a wildtype form. It is not known why this effect is exclusive to the G12/13 subfamily, nor has a mechanism been elucidated for overexpressed Gα13 promoting tumor progression. Using a reporter gene assay for serum response factor (SRF)-mediated transcription in HEK293 cells, we found that transiently expressed, wildtype Gα13 generates a robust SRF signal, approximately half the amplitude observed for GTPase-defective Gα13. When epitope-tagged, wildtype Gα13 was titrated upward in cells, a sharp increase in SRF stimulation was observed coincident with a "spillover" of Gα13 from membrane-associated to a soluble fraction. Overexpressing G protein β and γ subunits caused both a decrease in this signal and a shift of wildtype Gα13 back to the membranous fraction, suggesting that stoichiometric imbalance in the αβγ heterotrimer results in aberrant subcellular localization and signalling by overexpressed Gα13. We also examined the acylation requirements of wildtype Gα13 for signalling to SRF. Similar to GTPase-defective Gα13, S-palmitoylation of the wildtype α subunit was necessary for SRF activation but could be replaced functionally by an engineered site for N-terminal myristoylation. However, a key difference was observed between wildtype and GTPase-defective Gα13: whereas the latter protein lacking palmitoylation sites was rescued in its SRF signalling by either an engineered polybasic sequence or a C-terminal isoprenylation site, these motifs failed to restore signalling by wildtype, non-palmitoylated Gα13. These findings illuminate several components of the mechanism in which overexpressed, wildtype Gα13 contributes to growth and tumorigenic signalling, and reveal greater stringency in its requirements for post-translational modification in comparison to GTPase-defective Gα13.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2022.110534 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Beijing National Laboratory for Condensed Matter Physics, Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
The glucose-6-phosphatase (G6Pase) is an integral membrane protein that catalyzes the hydrolysis of glucose-6-phosphate (G6P) in the endoplasmic reticulum lumen and plays a vital role in glucose homeostasis. Dysregulation or genetic mutations of G6Pase are associated with diabetes and glycogen storage disease 1a (GSD-1a). Studies have characterized the biophysical and biochemical properties of G6Pase; however, the structure and substrate recognition mechanism of G6Pase remain unclear.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China.
Manganese (Mn) is a neurotoxin that has been etiologically linked to the development of neurodegenerative diseases in the case of overexposure. It is widely accepted that overexposure to Mn leads to manganism, which has clinical symptoms similar to Parkinson's disease (PD), and is referred to as parkinsonism. Astrocytes have been reported to scavenge and degrade extracellular α-synuclein (α-Syn) in the brain.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036 Tamil Nadu, India.
Interactions between proteins and RNAs are essential for the proper functioning of cells, and mutations in these molecules may lead to diseases. These protein mutations alter the strength of interactions between the protein and RNA, generally described as binding affinity (Δ). Hence, the affinity change upon mutation (ΔΔ) is an important parameter for understanding the effect of mutations in protein-RNA complexes.
View Article and Find Full Text PDFImmunohorizons
January 2025
Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.
Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.
View Article and Find Full Text PDFImmunohorizons
January 2025
Center for Virus Research, Chao Family Comprehensive Cancer Center, Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California, Irvine, Irvine, CA, United States.
The differentiation and functionality of virus-specific T cells during acute viral infections are crucial for establishing long-term protective immunity. While numerous molecular regulators impacting T cell responses have been uncovered, the role of cellular prion proteins (PrPc) remains underexplored. Here, we investigated the impact of PrPc deficiency on the differentiation and function of virus-specific T cells using the lymphocytic choriomeningitis virus (LCMV) Armstrong acute infection model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!