Enhancing the antitumor immunosurveillance of PD-L1-targeted gene therapy for metastatic melanoma using cationized Panax Notoginseng polysaccharide.

Int J Biol Macromol

Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China. Electronic address:

Published: January 2023

Improved curative effects with reduced toxicity has always been the ultimate goal of gene delivery vectors for tumor immunotherapy. Panax notoginseng polysaccharide (PNP), a natural plant-derived macromolecule, not only has antitumor immune activity but also has the typical structural characteristics useful for gene delivery. In this work, positively charged polyethyleneimine (PEI) was directly grafted to the backbone of PNP to induced its charge reversal and generate a functional gene vector (PNP-PEI). Moreover, a short hairpin RNA targeting the programmed death-ligand 1 (PD-L1) was loaded into PNP-PEI to generate a potentially therapeutic nanoparticle (PNP-PEI/shPD-L1). In vitro and in vivo experiments demonstrated that PNP-PEI could efficiently carry the therapeutic shPD-L1 into tumor cells and that PNP-PEI/shPD-L1 could significantly inhibit the expression of PD-L1 and growth of B16-F10 cells. Noteworthily, treatment with PNP-PEI reversed the phenotype of macrophages from M2 to M1 subtype and promoted dendritic cell maturation, which encouraged the host immunity and enhanced the therapeutic antitumor effects. In summary, this study describes a PNP-based gene delivery vector and highlights the beneficial immunopotentiating therapeutic outcomes of PNP-PEI for tumor immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.242DOI Listing

Publication Analysis

Top Keywords

gene delivery
12
panax notoginseng
8
notoginseng polysaccharide
8
tumor immunotherapy
8
gene
5
pnp-pei
5
enhancing antitumor
4
antitumor immunosurveillance
4
immunosurveillance pd-l1-targeted
4
pd-l1-targeted gene
4

Similar Publications

Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.

View Article and Find Full Text PDF

Purpose: This study aimed to identify a novel recombinant adeno-associated virus (rAAV) capsid variant that can widely transfect the deep retina through intravitreal injection and to assess their effectiveness and safety in gene delivery.

Methods: By adopting the sequences of various cell-penetrating peptides and inserting them into the capsid modification region of AAV2, we generated several novel variants. The green fluorescent protein (GFP)-carrying variants were screened following intravitreal injection.

View Article and Find Full Text PDF

Nanoparticle-Mediated Explosive Anti-PD-L1 Factory Built in Tumor for Advanced Immunotherapy.

Adv Mater

January 2025

Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.

Immunotherapy, particularly immune checkpoint blockade (ICB) therapies, has revolutionized oncology. However, it encounters challenges such as inadequate drug accumulation and limited efficacy against "cold" tumors characterized by lack of T cell infiltration and immunosuppressive microenvironments. Here, a controlled antibody production and releasing nanoparticle (CAPRN) is introduced, designed to augment ICB efficacy by facilitating tumor-targeted antibody production and inducing photodynamic cell death.

View Article and Find Full Text PDF

A new effLuc/Kate dual reporter allele for tumour imaging in mice.

Dis Model Mech

January 2025

Laboratory Genes and Disease, Department of Laboratory Medicine, Medical University of Vienna (MUW), Vienna, Austria.

Genetically engineered mouse models (GEMMs) are instrumental for modelling local and systemic features of complex diseases such as cancer. Non-invasive, longitudinal cell detection and monitoring in tumors, metastases and/or the micro-environment is paramount to achieve a better spatiotemporal understanding of cancer progression and to evaluate therapies in preclinical studies. Bioluminescent and fluorescent reporters marking tumor cells or their microenvironment are valuable for non-invasive cell detection and monitoring in vivo.

View Article and Find Full Text PDF

Intravesical instillation of chemotherapy has been performed to reduce the risk of intravesical recurrence of bladder cancer. However, its antitumor effect is not necessarily sufficient, which may be partially due to inadequate delivery of intravesically administered chemotherapeutic agents to bladder tumors. Ultrasound irradiation to target tissues in the presence of microbubbles is a technique to transiently enhance cell membrane permeability and achieve efficient drug delivery to the desired sites without damage to non-target areas; this technique has been used in chemotherapy, immunotherapy, gene therapy, and radiotherapy for the treatment of various cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!