Engineering plant microbiomes has the potential to improve plant health in a rapid and sustainable way. Rapidly changing climates and relatively long timelines for plant breeding make microbiome engineering an appealing approach to improving food security. However, approaches that have shown promise in the lab have not resulted in wide-scale implementation in the field. Here, we suggest the use of an integrated approach, combining mechanistic molecular and genetic knowledge, with ecological and evolutionary theory, to target knowledge gaps in plant microbiome engineering that may facilitate translatability of approaches into the field. We highlight examples where understanding microbial community ecology is essential for a holistic understanding of the efficacy and consequences of microbiome engineering. We also review examples where understanding plant-microbe evolution could facilitate the design of plants able to recruit specific microbial communities. Finally, we discuss possible trade-offs in plant-microbiome interactions that should be considered during microbiome engineering efforts so as not to introduce off-target negative effects. We include classic and emergent approaches, ranging from microbial inoculants to plant breeding to host-driven microbiome engineering, and address areas that would benefit from multidisciplinary approaches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pbi.2022.102316 | DOI Listing |
Food Sci Nutr
January 2025
Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering Guizhou University Guiyang China.
Camellia seed oil (CSO), a potential prebiotic agent, can significantly increase the relative abundance of () in mice gut microbiota following oral administration, this study aims to investigate the enhancing effect in vitro. The results showed that after 24-h co-cultivation with 0.5% (v/v) CSO, the growth of increased from 11.
View Article and Find Full Text PDFHortic Res
January 2025
Metabolic engineering and Synthetic Biology Laboratory, Department of Natural Products, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, Punjab, India.
Triterpene (C30 isoprene compounds) represents the most structurally diverse class of natural products and has been extensively exploited in the food, medicine, and industrial sectors. Decades of research on medicinal triterpene biosynthetic pathways have revealed their roles in stress tolerance and shaping microbiota. However, the biological function and mechanism of triterpenes are not fully identified.
View Article and Find Full Text PDFJ Agric Food Res
December 2024
Center for Indigenous Health Research, Wuqu' Kawoq|Maya Health Alliance, Tecpan, Chimaltenango, 04006, Guatemala.
Fungal toxins in local food supplies are a critical environmental health risk to communities globally. To better characterize hypothesized toxin control points among households, we conducted household surveys across four departments (first administrative division) in Guatemala. Data gathered included maize harvesting, processing, storage, and traditional nixtamalization practices.
View Article and Find Full Text PDFImmune Netw
December 2024
Immuno-Genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, University Hassan II, Casablanca 20000, Morocco.
The human body contains a diverse array of microorganisms, which exert a significant impact on various physiological processes, including immunity, and can significantly influence susceptibility to various diseases such as cancer. Recent advancements in metagenomic sequencing have uncovered the role of intratumoral microbiome, which covertly altered the development of cancer, the growth of tumors, and the response to existing treatments through multiple mechanisms. These mechanisms involve mainly DNA damage induction, oncogenic signaling pathway activation, and the host's immune response modulation.
View Article and Find Full Text PDFFood Chem X
January 2025
Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 10083, China.
Instability in initial abiotic factors of open solid-state fermentation systems can significantly alter 's flavor profile, but the mechanisms governing microbial interactions and flavor formation remain unclear. This study comprehensively monitored changes in abiotic factors, microbial communities, and flavor profiles across two distinct fermentation processes in a distillery, which differed significantly in their management of initial abiotic factors. Our results revealed significant differences in abiotic factors between the two groups, including moisture, ethanol, acidity, glucose, and organic acid levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!