Despite the success of immune checkpoint blockade (ICB) therapy in cancer management, ICB-based immunotherapy of triple-negative breast cancer (TNBC) still suffers from immunosuppressive tumor microenvironment (ITM). To break through the bottleneck of TNBC immunotherapy, a self-cascaded unimolecular prodrug consisting of an acidic pH-activatable doxorubicin and an aggregation-induced emission luminogen (AIEgen) photosensitizer coupled to a caspase-3-responsive peptide was engineered. The generated prodrug, could not only release doxorubicin initiatively in acidic tumor microenvironment, but also activate apoptosis-related caspase-3. The activated caspase-3 could in turn trigger release and in situ aggregation of photosensitizers. Importantly, the unimolecular prodrug exhibits a renal clearance pathway similar to small molecules in vivo, while the aggregated AIEgens prolong tumor retention for long-term fluorescence imaging and repeatable photodynamic therapy (PDT) by only one single-dose injection. Furthermore, the tumor-detained PDT boosts both immunogenic cell death of TNBC cells and maturation of dendritic cells. Finally, the combination of repeatable PDT with ICB therapy further promotes the proliferation and intratumoral infiltration of cytotoxic T lymphocytes, and effectively suppresses tumor growth and pulmonary metastasis. This prodrug is a proof-of-concept that confirms the first self-cascaded chemo-PDT strategy to reverse the ITM and boost the ICB-mediated TNBC immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2022.121920 | DOI Listing |
Langmuir
July 2024
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
It is crucial to use simple methods to prepare stable polymeric micelles with multiple functions for cancer treatment. Herein, via a "bottom-up" strategy, we reported the fabrication of β-CD-(PEOSMA-PCPTMA-PPEGMA) (βPECP) unimolecular micelles that could simultaneously treat tumors and bacteria with chemotherapy and photodynamic therapy (PDT). The unimolecular micelles consisted of a 21-arm β-cyclodextrin (β-CD) core as a macromolecular initiator, photosensitizer eosin Y (EOS-Y) monomer EOSMA, anticancer drug camptothecin (CPT) monomer, and a hydrophilic shell PEGMA.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
June 2024
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China. Electronic address:
Combination chemotherapy has been recognized as a more powerful strategy for tumor treatment rather than the single chemotherapy. However, the interactive mechanism of the two hydrophobic chemotherapeutic drugs has not been explored by now. Aiming for a better synergistic effect, such interactive mechanism was investigated in the present work, by designing CPT@DOX-DPU-PEG nanomedicine with encapsulated camptothecin (CPT) and conjugated doxorubicin (DOX).
View Article and Find Full Text PDFACS Omega
February 2023
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou510006, PR China.
Unimolecular micelles composed of a single polymeric molecule have recently attracted significant attention in anti-cancer drug delivery due to their high thermodynamic stability and small particle sizes. Applying the prodrug strategy to unimolecular micelles may provide superior nano-drug carriers with simultaneous high stability, low drug leakage, and well-drug loading capacity. However, the formation mechanism of the unimolecular prodrug micelles, the superiority of the prodrug strategy, as well as the prodrug controlled release mechanism were scantily understood at the mesoscopic scale.
View Article and Find Full Text PDFBiomaterials
January 2023
Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China. Electronic address:
Despite the success of immune checkpoint blockade (ICB) therapy in cancer management, ICB-based immunotherapy of triple-negative breast cancer (TNBC) still suffers from immunosuppressive tumor microenvironment (ITM). To break through the bottleneck of TNBC immunotherapy, a self-cascaded unimolecular prodrug consisting of an acidic pH-activatable doxorubicin and an aggregation-induced emission luminogen (AIEgen) photosensitizer coupled to a caspase-3-responsive peptide was engineered. The generated prodrug, could not only release doxorubicin initiatively in acidic tumor microenvironment, but also activate apoptosis-related caspase-3.
View Article and Find Full Text PDFBioconjug Chem
February 2022
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
Demicellization of the self-assembled multimolecular micelles upon dilution restricts their application as drug delivery systems (DDSs) for tumor treatment. Here, a redox-responsive hyperbranched polymer prodrug (HBPP) was designed with a high drug content of 62.0% as a unimolecular micelle for the tumor-selective drug delivery, via the facile self-condensing vinyl polymerization (SCVP) of redox-responsive doxorubicin-based prodrug monomer MA-SS-DOX and poly(ethylene glycol) methacrylate (PEGMA) with -chloromethylstyrene (CMS) as an inimer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!