Stabilization of fluid droplets, classically as oil-in-water or water-in-oil emulsions, is typically conducted using molecular surfactants or small particulates that localize at oil-water interfaces. In this paper, we describe a method whereby thin polymer films are converted photolithographically to ribbon-like mesoscale objects, which, in turn, adsorb to fluid interfaces where they extend as appendages, or arms, from the droplet surface. These "mesoscale polymer surfactants", or MPSs, were prepared from thin polymer films containing reactive functional moieties, including coumarin for photo-cross-linking, triphenylsulfonium for photoacid generation, and -butyl ester for solubility switching. The resultant MPSs, prepared initially on Si substrates, were released into water to reveal an exquisite shape sensitivity (forming straight, bent, or helical structures) and affinity for droplet interfaces based on their preparation conditions and the properties of the surrounding liquid. Notably, the lithographic techniques employed were amenable to differentiating the wettability of MPS segments, affording access to diblock-like MPSs which adhered to dispersed droplets their hydrophobic segments, allowing their hydrophilic segments to extend into the continuous phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.2c09346 | DOI Listing |
Int J Biol Macromol
January 2025
School of Food Science and Engineering, Wuhan Polytechnic University,Wuhan 430023, China.
Glycosylation can be used to improve the emulsifying properties of protein by covalently binding with sugar. In this study, we prepared coconut protein (CP) -polygalacturonic acid (PA) conjugates by dry-heat method, studied the effect of PA with different molecular weight on the structure and functionality of CP, and characterized the interfacical behavior of CP at the oil-water interface to establish the relationship between interfacial behavior and emulsion stability. The results showed that different molecular weights of PA (28.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Engineering Mechanics, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden.
We here explore confinement-induced assembly of whey protein nanofibrils (PNFs) into microscale fibers using microfocused synchrotron X-ray scattering. Solvent evaporation aligns the PNFs into anisotropic fibers, and the process is followed in situ by scattering experiments within a droplet of PNF dispersion. We find an optimal temperature at which the order parameter of the protein fiber is maximized, suggesting that the degree of order results from a balance between the time scales of the forced alignment and the rotational diffusion of the fibrils.
View Article and Find Full Text PDFAdv Mater
January 2025
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
The application of physical fields is crucial for droplet generation and manipulation, underpinning technologies like printing, microfluidic biochips, drug delivery, and flexible sensors. Despite advancements, precise micro/nanoscale droplet generation and accurate microfluidic reactions remain challenging. Inspired by the liquid ejection mechanisms in microscopic organisms, an electrostatic manipulator for the precise capture, emission, and transport of microdroplets is proposed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China.
Inspired by the adhesion differences on the surfaces of fresh and dried rose petals, a rose bionic self-cleaning fog collector (RBSC) was designed and prepared to realize a self-driven fog harvesting function. The droplet detachment iteration rate was revealed by the regulating mechanism of the surface adhesion force of the RBSC and the influence of bionic texture parameters, as demonstrated through the fog harvesting experiment and droplet detachment failure analysis. Through the surface adhesion force regulation, the probability of droplet dissipation with the airflow is reduced by increasing the falling droplets' mass, and the single surface fog capture efficiency is up to 740 mg cm h.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
January 2025
College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
Pickering emulsion stabilized by food grade nanoparticles with stimulus response as a targeted delivery system for lipophilic bioactive compounds has attracted people's attention. In this study, ferulic acid was used to modify saccharified zein to prepare pH-sensitive nanoparticles for stabilizing Pickering emulsion. The structure, interface behavior, stability of Pickering emulsion and gastrointestinal digestion characteristics of nanoparticles in vitro were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!