Emissions of fine particulate matter (PM) from human activities have been linked to substantial disease burdens, but evidence regarding how reducing PM at its sources would improve public health is sparse. We followed a population-based cohort of 2.7 million adults across Canada from 2007 through 2016. For each participant, we estimated annual mean concentrations of PM and the fractional contributions to PM from the five leading anthropogenic sources at their residential address using satellite observations in combination with a global atmospheric chemistry transport model. For each source, we estimated the causal effects of six hypothetical interventions on 10-y nonaccidental mortality risk using the parametric g-formula, a structural causal model. We conducted stratified analyses by age, sex, and income. This cohort would have experienced tangible health gains had contributions to PM from any of the five sources been reduced. Compared with no intervention, a 10% annual reduction in PM contributions from transportation and power generation, Canada's largest and fifth-largest anthropogenic sources, would have prevented approximately 175 (95%CI: 123-226) and 90 (95%CI: 63-117) deaths per million by 2016, respectively. A more intensive 50% reduction per year in PM contributions from the two sources would have averted 360 and 185 deaths per million, respectively, by 2016. The potential health benefits were greater among men, older adults, and low-income earners. In Canada, where PM levels are among the lowest worldwide, reducing PM contributions from anthropogenic sources by as little as 10% annually would yield meaningful health gains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9894124PMC
http://dx.doi.org/10.1073/pnas.2209490119DOI Listing

Publication Analysis

Top Keywords

anthropogenic sources
12
fine particulate
8
particulate matter
8
health gains
8
contributions sources
8
deaths 2016
8
sources
7
contributions
5
impact lowering
4
lowering fine
4

Similar Publications

Biodegradation of Phenol at High Initial Concentration by 3D Strain: Biochemical and Genetic Aspects.

Microorganisms

January 2025

Laboratory of Microbial Enzymology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research, Russian Academy of Sciences, Prosp. Nauki 5, 142290 Pushchino, Russia.

Phenolic compounds are an extensive group of natural and anthropogenic organic substances of the aromatic series containing one or more hydroxyl groups. The main sources of phenols entering the environment are waste from metallurgy and coke plants, enterprises of the leather, furniture, and pulp and paper industries, as well as wastewater from the production of phenol-formaldehyde resins, adhesives, plastics, and pesticides. Among this group of compounds, phenol is the most common environmental pollutant.

View Article and Find Full Text PDF

Particulate matter (PM), particularly fine (PM) and ultrafine (PM) particles, originates from both natural and anthropogenic sources, such as biomass burning and vehicle emissions. These particles contain harmful compounds that pose significant health risks. Upon inhalation, ingestion, or dermal contact, PM can penetrate biological systems, inducing oxidative stress, inflammation, and DNA damage, which contribute to a range of health complications.

View Article and Find Full Text PDF

This study aims to determine the spatial distribution of heavy metal pollution in Ermenek Dam Lake, water quality assessment and pollution sources. For this purpose, samples were taken 6 times a year from 12 points determined in 2024. Physico-chemical parameters and heavy metals were analyzed in the study.

View Article and Find Full Text PDF

Effectiveness of artificially planted mangroves on remediation of metals released from ship-breaking activities.

Mar Pollut Bull

January 2025

Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; School of Engineering and Built Environment, Griffith University, Brisbane, QLD, Australia; East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu Darul Iman, Malaysia. Electronic address:

The pervasive and escalating issue of toxic metal pollution has gathered global attention, necessitating the exploration of innovative ecological strategies like phytoremediation. This study explored the extent of potentially toxic metal contamination status and the effectiveness of three planted mangrove species (Avicennia marina, Bruguiera gymnorhiza,and Excoecaria agallocha) in phytoremediation efforts to reduce pollution level. The results indicated that the mean concentrations of elements in the sediment of the area followed a descending sequence: Fe (27,136.

View Article and Find Full Text PDF

In order to understand the spatial distribution, influencing factors, pollution level and sources of heavy metals in black soil profiles in Northeast China, black soil profile samples were collected from five sampling points in Haicheng City, Liaoning Province, with the deepest profile depth of 50m. The contents of heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in soil at different depths were analyzed, and the distribution characteristics and influencing factors of heavy metals in black soil profiles were analyzed. The pollution level of heavy metals in soil was evaluated based on the geo-accumulation index method and enrichment factor method, and the sources of heavy metals in soil were analyzed based on principal component analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!