Theories of motor imagery conflict in their account of what happens during an imagined movement, with some suggesting that movement is simulated while others suggest it involves creating and elaborating upon an internal representation of the movement. Here we report evidence that imagery involves the simulation of a movement and that it varies in accuracy. Two groups of participants performed a motor task focused on challenging movement execution either overtly or via motor imagery. Overt performance was used to model expected performance given required movement characteristics (i.e., speed, complexity, familiarity), which was then compared with self-reported accuracy during imagery. Movement characteristics had a large effect on self-reported accuracy compared with a small effect of imagery vividness. Self-reported accuracy improved across trials with familiar movements compared with novel movements in a similar manner for each group. The complexity of the imagined movement did not influence movement time during imagery or overt trials, further suggesting that imagined movements are simulated rather than abstractly represented. Our results therefore support models of motor imagery that involve the simulation of a movement and its viability, which may be the basis of imagery-based motor learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/xhp0001064DOI Listing

Publication Analysis

Top Keywords

imagined movement
12
motor imagery
12
self-reported accuracy
12
movement
11
imagery
8
imagery vividness
8
simulation movement
8
imagery overt
8
movement characteristics
8
accuracy
5

Similar Publications

The complementary strengths of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have driven extensive research into integrating these two noninvasive modalities to better understand the neural mechanisms underlying cognitive, sensory, and motor functions. However, the precise neural patterns associated with motor functions, especially imagined movements, remain unclear. Specifically, the correlations between electrophysiological responses and hemodynamic activations during executed and imagined movements have not been fully elucidated at a whole-brain level.

View Article and Find Full Text PDF

Purpose: The expression of the respiratory events in OSA is influenced by different mechanisms. In particular, REM sleep can highly increase the occurrence of events in a subset of OSA patients, a condition dubbed REM-OSA (often defined as an AHI 2 times higher in REM than NREM sleep). However, a proper characterization of REM-OSA and its pathological sequelae is still inadequate, partly because of limitations in the current definitions.

View Article and Find Full Text PDF

Improved motor imagery skills after repetitive passive somatosensory stimulation: a parallel-group, pre-registered study.

Front Neural Circuits

January 2025

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.

Introduction: Motor-imagery-based Brain-Machine Interface (MI-BMI) has been established as an effective treatment for post-stroke hemiplegia. However, the need for long-term intervention can represent a significant burden on patients. Here, we demonstrate that motor imagery (MI) instructions for BMI training, when supplemented with somatosensory stimulation in addition to conventional verbal instructions, can help enhance MI capabilities of healthy participants.

View Article and Find Full Text PDF

Objective: A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).

View Article and Find Full Text PDF

Motor imagery does not effectively improve walking-related performance in older adults: A randomised controlled trial.

Ann Phys Rehabil Med

January 2025

Healthy Brain & Mind Research Centre (HBM), School of Behavioural and Health Sciences, Australian Catholic University, 115 Victoria Parade, Fitzroy, VIC, 3065 Australia.

Background: Inaccurate perception of one's physical abilities is potentially related to age-related declines in motor planning and can lead to changes in walking. Motor imagery training is effective at improving balance and walking in older adults, but most research has been conducted on older adults following surgery or in those with a history of falls. Deficits in motor imagery ability are associated with reduced executive function in older adults with cognitive impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!