Abnormal levels (high/low) of urinary human serum albumin (HSA) are associated with a number of diseases and thus act as an essential biomarker for quick therapeutic monitoring and biomedical diagnosis, entailing the urgent development of an effective chemosensor to quantify the albumin levels. Herein, we have rationally designed and developed a small fluorogenic molecular probe, (Z)-2-(5-((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl) methylene)-4-oxo-2-thioxothiazolidin-3-yl) acetic acid (HJRA) with a twisted intramolecular charge transfer (TICT) property, which can easily self-assemble into nonfluorescent nanoaggregates in aqueous solution. However, HJRA nanoaggregates can selectively bind with serum albumin proteins (HSA/BSA) in ∼100% PBS medium, thereby facilitating the disassembly of nanoaggregates into monomers, exhibiting a clear turn-on red fluorescent response toward HSA and BSA. Analysis of the specific binding mechanism between HJRA and HSA using a site-selective fluorescence displacement assay and molecular docking simulations indicates that a variety of noncovalent interactions are responsible for the disassembly of nanoaggregates with the concomitant trapping of the HJRA monomer at site I in HSA, yielding a substantial red emission caused by the inhibition of intramolecular rotation of HJRA probe inside the hydrophobic cavity of HSA. The limit of detection (LOD) determined by the 3σ/slope method was found to be 1.13 nM, which is substantially below the normal HSA concentration level in healthy urine, signifying the very high sensitivity of the probe toward HSA. The comparable results and quick response toward quantification of HSA in urine by HJRA with respect to the Bradford method clearly point toward the superiority of this method compared to the existing ones and may lead to biomedical applications for HSA quantification in urine. It may also find potential application in live-cell imaging of HSA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.2c00820 | DOI Listing |
Pharmaceutics
December 2024
PharmaMar S.A., Clinical Pharmacology Department, Clinical Development, 28770 Madrid, Spain.
: Pathophysiological variability in patients with cancer is associated with differences in responses to pharmacotherapy. In this work, we aimed to describe the demographic characteristics and hematological, biochemical, and coagulation variables in a large oncology cohort and to develop, optimize, and provide open access to modeling equations for the estimation of variables potentially relevant in pharmacokinetic modeling. : Using data from 1793 patients with cancer, divided into training ( = 1259) and validation ( = 534) datasets, a modeling network was developed and used to simulate virtual oncology populations.
View Article and Find Full Text PDFPharmaceutics
November 2024
Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, 90-419 Lodz, Poland.
Background: The penetration of drugs through the blood-brain barrier is one of the key pharmacokinetic aspects of centrally acting active substances and other drugs in terms of the occurrence of side effects on the central nervous system. In our research, several regression models were constructed in order to observe the connections between the active pharmaceutical ingredients' properties and their bioavailability in the CNS, presented in the form of the log BB parameter, which refers to the drug concentration on both sides of the blood-brain barrier.
Methods: Predictive models were created using the physicochemical properties of drugs, and multiple linear regression and a data mining method, i.
Pharmaceuticals (Basel)
December 2024
Department of Radiology, Sixth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
Albumin-bound paclitaxel (nab-PTX) nanoparticles have been proven effective in treating advanced pancreatic cancer. However, the clinical application of nab-PTX nanoparticles is often associated with suboptimal outcomes and severe side effects due to its non-specific distribution and rapid clearance. This study aims to develop a novel nanoplatform that integrates sonodynamic therapy (SDT) and chemotherapy to enhance treatment efficacy and reduce systemic side effects.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul 34098, Turkey.
: The key components of the blood-brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. Nearly all large therapeutic molecules and over 90% of small-molecule drugs cannot cross the BBB.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy.
We report the design and development of a novel multifunctional nanostructure, RB-AuSiO_HSA-DOX, where tri-modal cancer treatment strategies-photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy-luminescent properties and targeting are integrated into the same scaffold. It consists of a gold core with optical and thermo-plasmonic properties and is covered by a silica shell entrapping a well-known photosensitizer and luminophore, Rose Bengal (RB). The nanoparticle surface was decorated with Human Serum Albumin (HSA) through a covalent conjugation to confer its targeting abilities and as a carrier of Doxorubicin (DOX), one of the most effective anticancer drugs in clinical chemotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!