Ubiquitin-mediated proteolysis plays crucial roles in plant responses to environmental stress. However, the mechanism by which E3 ubiquitin ligases modulate plant stress response still needs to be elucidated. In this study, we found that rice PLANT U-BOX PROTEIN 16 (OsPUB16), a U-box E3 ubiquitin ligase, negatively regulates rice drought response. Loss-of-function mutants of OsPUB16 generated through CRISPR/Cas9 system exhibited the markedly enhanced water-deficit tolerance, while OsPUB16 overexpression lines were hypersensitive to water deficit stress. Moreover, OsPUB16 negatively regulated ABA and JA response, and ospub16 mutants produced more endogenous ABA and JA than wild type when exposed to water deficit. Mechanistic investigations revealed that OsPUB16 mediated the ubiquitination and degradation of OsMADS23, which is the substrate of OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE 9 (SAPK9) and increases rice drought tolerance by promoting ABA biosynthesis. Further, the ChIP-qPCR analysis and transient transactivation activity assays demonstrated that OsMADS23 activated the expression of JA-biosynthetic gene OsAOC by binding to its promoter. Interestingly, SAPK9-mediated phosphorylation on OsMADS23 reduced its ubiquitination level by interfering with the OsPUB16-OsMADS23 interaction, which thus enhanced OsMADS23 stability and promoted OsAOC expression. Collectively, our findings establish that OsPUB16 reduces plant water-deficit tolerance by modulating the 'SAPK9-OsMADS23-OsAOC' pathway to repress ABA and JA biosynthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731423 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1010520 | DOI Listing |
Plant Physiol Biochem
January 2025
Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP, Brazil.
Bacillus subtilis is known to promote root growth and improve plant physiology, while organic compost enhances soil water retention. This study explored the combined effect of inoculating B. subtilis in organic compost on soybean growth under water deficit.
View Article and Find Full Text PDFHeliyon
January 2025
Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran.
Drought stress poses a serious threat to agricultural productivity worldwide. This study investigated the mitigative effects of exogenous spermidine on drought stressed yarrow ( L.).
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Department of Plant Pathology, University of Agricultural Sciences, Gandhi Krishi Vignana Kendra (GKVK), Bengaluru, India.
In a wake of shifting climatic scenarios, plants are frequently forced to undergo a spectrum of abiotic and biotic stresses at various stages of growth, many of which have a detrimental effect on production and survival. Naturally, microbial consortia partner up to boost plant growth and constitute a diversified ecosystem against abiotic stresses. Despite this, little is known pertaining to the interplay between endophytic microbes which release phytohormones and stimulate plant development in stressed environments.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Department of Agriculture, Food and Environment, University of Pisa, Italy; Centre of Agro-Ecological Research "Enrico Avanzi" (CiRAA), Pisa, Italy.
Tomato (Solanum lycopersicum L.) is a major crop in the Mediterranean basin, vulnerable to drought at any crop stage. Landraces are traditional, locally adapted varieties with greater resilience to water scarcity than modern cultivars.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Horticulture, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan.
Melatonin is considered an effective bio-stimulant that is crucial in managing several abiotic stresses including drought. However, its potential mechanisms against drought stress in fragrant roses are not well understood. Here, we aim to investigate the role of melatonin on plants cultivated under drought stress (40 % field capacity) and normal irrigation (80 % field capacity).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!