Input-shaping control has received considerable research attention for suppressing residual vibrations. Although numerous studies have been conducted on designing input shapers with arbitrary robustness to modeling errors, no studies have focused on the design of input shapers with arbitrarily specified shaping times. In this study, a specified-duration (SD) shaper, which is an input shaper with an arbitrarily specified shaping time, and a systematic method to design an SD shaper using impulse vectors are proposed. As the specified shaping time increases, the SD shaper increases the number of impulses one by one according to the number of added derivative constraints, thereby improving robustness to modeling errors. The performance of the SD shaper was evaluated for a second-order system through computer simulations. The simulation results revealed that the SD shaper suppresses residual vibrations of the vibratory system at the specified shaping time. The validity of the SD shaper was experimentally verified using a horizontal beam vibration apparatus. The results of this study provide insight into the development of vibration suppression strategies with input shaping control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704665 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276669 | PLOS |
Sensors (Basel)
January 2025
Institute of Nanotechnologies, Electronics and Equipment Engineering, Southern Federal University, 347922 Taganrog, Russia.
One of the challenging problems in the research and development of vibration sensors relates to the formation of Ohmic contacts for the removal of an electrical signal. In some cases, it is proposed to use arrays of carbon nanotubes (CNTs), which can serve as highly elastic electrode materials for vibration sensors. The purpose of this work is to study the effect of a current-collecting layer of CNTs grown over silicon on the properties of a lead zirconate titanate (PZT) film, which is frequently employed in mechanical vibration sensors or energy harvesters.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China.
This study proposes a novel rolling bearing fault diagnosis technique based on a synchrosqueezing wavelet transform (SWT) and a transfer residual convolutional neural network (TRCNN) designed to address the difficulties of feature extraction caused by the non-stationarity of fault signals, as well as the issue of low fault diagnosis accuracy resulting from small sample quantities. This approach transforms the one-dimensional vibration signal into time-frequency diagrams using an SWT based on complex Morlet wavelet basis functions, which redistributes (squeezes) the values of the wavelet coefficients at different localized points in a time-frequency plane to the estimated instantaneous frequencies. This allows the energy to be more fully concentrated in actual corresponding frequency components.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Ulsan Ship and Ocean College, Ludong University, Yantai 264025, China.
This study introduces a novel analytical framework for investigating the vibration characteristics of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) elliptical cylindrical shells under arbitrary boundary conditions. Unlike previous studies that focused on simplified geometries or specific boundary conditions, this work combines the least-squares weighted residual method (LSWRM) with an adapted variational principle, addressing high-order vibration errors and ensuring continuity across structural segments. The material properties are modeled using an extended rule of mixtures, capturing the effects of carbon nanotube volume fractions and distribution types on structural dynamics.
View Article and Find Full Text PDFbioRxiv
December 2024
Caruso Department of Otolaryngology - Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Cochlear outer hair cells (OHCs) transduce sound-induced vibrations of their stereociliary bundles into receptor potentials that drive changes in cell length. While fast, phasic OHC length changes are thought to underlie an amplification process required for sensitive hearing, OHCs also exhibit large tonic length changes. The origins and functional significance of this tonic motility are unclear.
View Article and Find Full Text PDFRSC Adv
January 2025
Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!