Conversion of Mevalonate to Isoprenol Using Light Energy in without Consuming Sugars for ATP Supply.

ACS Synth Biol

Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka, Suita, Osaka565-0871, Japan.

Published: December 2022

Bioconversion of key intermediate metabolites such as mevalonate into various useful chemicals is a promising strategy for microbial production. However, the conversion of mevalonate into isoprenoids requires a supply of adenosine triphosphate (ATP). Light-driven ATP regeneration using microbial rhodopsin is an attractive module for improving the intracellular ATP supply. In the present study, we demonstrated the ATP-consuming conversion of mevalonate to isoprenol using rhodopsin-expressing cells as a whole-cell catalyst in a medium that does not contain energy cosubstrate, such as glucose. Heterologous genes for the synthesis of isoprenol from mevalonate, which requires three ATP molecules for the series of reactions, and a delta-rhodopsin gene derived from were cointroduced into . To evaluate the conversion efficiency of mevalonate to isoprenol, the cells were suspended in a synthetic medium containing mevalonate as the sole carbon source and incubated under dark or light illumination (100 μmol m s). The specific isoprenol production rates were 10.0 ± 0.9 and 20.4 ± 0.7 μmol gDCW h for dark and light conditions, respectively. The conversion was successfully enhanced under the light condition. Furthermore, the conversion efficiency increased with increasing illumination intensity, suggesting that ATP regenerated by the proton motive force generated by rhodopsin using light energy can drive ATP-consuming reactions in the whole-cell catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.2c00313DOI Listing

Publication Analysis

Top Keywords

conversion mevalonate
12
mevalonate isoprenol
12
light energy
8
atp supply
8
whole-cell catalyst
8
conversion efficiency
8
dark light
8
conversion
6
atp
6
mevalonate
6

Similar Publications

A parallel bioreactor strategy to rapidly determine growth-coupling relationships for bioproduction: a mevalonate case study.

Biotechnol Biofuels Bioprod

January 2025

Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.

Background: The climate crisis and depleting fossil fuel reserves have led to a drive for 'green' alternatives to the way we manufacture chemicals, and the formation of a bioeconomy that reduces our reliance on petrochemical-based feedstocks. Advances in Synthetic biology have provided the opportunity to engineer micro-organisms to produce compounds from renewable feedstocks, which could play a role in replacing traditional, petrochemical based, manufacturing routes. However, there are few examples of bio-manufactured products achieving commercialisation.

View Article and Find Full Text PDF

Mevalonate secretion is not mediated by a singular non-essential transporter in .

Biotechnol Notes

October 2024

Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.

Isoprenoids are highly valued targets for microbial chemical production, allowing the creation of fragrances, biofuels, and pharmaceuticals from renewable carbon feedstocks. To increase isoprenoid production, previous efforts have manipulated pyruvate dehydrogenase (PDH) bypass pathway flux to increase cytosolic acetyl-coA; however, this results in mevalonate secretion and does not necessarily translate into higher isoprenoid production. Identification and disruption of the transporter mediating mevalonate secretion would allow us to determine whether increasing PDH bypass activity in the absence of secretion improves conversion of mevalonate into downstream isoprenoids.

View Article and Find Full Text PDF

Isoprene is an important component in rubber production, which can be produced using the E. coli mevalonic acid (MVA) pathway, and this method has the advantage of green environmental protection and sustainable. However, due to the excessive accumulation of intermediates, the growth of cells was inhibited and the enzyme activity decreased gradually, so it was difficult to increase the yield of isoprene.

View Article and Find Full Text PDF

In humans, defects in leucine catabolism cause a variety of inborn errors in metabolism. Here, we use Caenorhabditis elegans to investigate the impact of mutations in mccc-1, an enzyme that functions in leucine breakdown. Through untargeted metabolomic and transcriptomic analyses we find extensive metabolic rewiring that helps to detoxify leucine breakdown intermediates via conversion into previously undescribed metabolites and to synthesize mevalonate, an essential metabolite.

View Article and Find Full Text PDF

Sustainable biosynthesis of squalene from waste cooking oil by the yeast .

Metab Eng Commun

June 2024

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No.29 the 13th Street TEDA, Tianjin, 300457, PR China.

Squalene is a highly sought-after triterpene compound in growing demand, and its production offers a promising avenue for circular economy practices. In this study, we applied metabolic engineering principles to enhance squalene production in the nonconventional yeast , using waste cooking oil as a substrate. By overexpressing key enzymes in the mevalonate pathway - specifically ERG9 encoding squalene synthase, ERG20 encoding farnesyl diphosphate synthase, and HMGR encoding hydroxy-methyl-glutaryl-CoA reductase - we achieved a yield of 779.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!