Pilot scale production of one-dimensional (FeS) rods was performed by using an automatic 20 L vessel at 80 °C under atmosphere condition with the resource utilization of Fe-rich sludge. The sludge was simulated at lab-scale with chemical pure of ferric trichloride. After the sludge treatment, the corresponding rods were not formed at room temperature. But by heating at 80 °C, erdite rod was well-crystallized after 0.5 h by only adding Na halite, and KFeS rod was crystallized weakly after 2 h and highly at 10 h with the addition of K halite. After 48 h heating, the rods grow radially to 300 nm for erdite, but to 5 μm for KFeS. However, at room temperature, erdite rod was converted to high crystallized KFeS in KOH water or ethanol solution, whilst the conversion of KFeS rod to erdite also occurred in NaOH water solution, but terminated in NaOH ethanol solution, without any morphology change. It is also noted that with the presence of both Na and K halite, the rod was an intermediate of erdite to KFeS with 1 μm length after heating at 100 °C but converted to 10-μm-length KFeS crystal at the temperature of > 120 °C. The thermodynamic results confirmed that during the rod polymerization, the Fe(OH)HS formation was the sole rate-limiting step and showed a positive Gibbs value of 6.45 kJ/mol at room temperature and negative values at the temperature of > 48 °C. In summary, this method not only enabled the vaporization of waste Fe-rich sludge as value-added rods without generating any secondary waste but also showed a new route for the in situ conversion of erdite/KFeS rods at room temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-24330-9 | DOI Listing |
Int J Biol Macromol
January 2025
Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China. Electronic address:
From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
TEMPO-CNF film modified by two-dimension transition metal MXene has certain antibacterial properties. However, the problem of long-lasting stability greatly restricts the feasibility of long-term use of the composite film. Here, we introduced polyaniline (PANI) as a modifying molecule, which was electrostatically adsorbed on the surface of the MXene nanosheets to prevent its self-stacking and delay its oxidation.
View Article and Find Full Text PDFTalanta
January 2025
Center for Multiplatform Metabolomics Studies (CEMM) at the Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil. Electronic address:
There is no consensus in the literature regarding the ideal protocol for obtaining and preparing cell samples for untargeted metabolomics. Nevertheless, the procedures must be carefully evaluated for proper and reliable results for each organism under study. This work proposes a novel protocol for determining intracellular metabolites in Leishmania promastigotes and is fully optimized for application in conjunction with gas chromatography-mass spectrometry platforms.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.
Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics and Medicinal Chemistry, University of the Pacific, Stockton, CA 95211, USA.
Micelles, liposomes, and solid lipid nanoparticles (SLNs) are promising drug delivery vehicles; however, poor aqueous stability requires post-processing drying methods for maintaining long-term stability. The objective of this study was to compare the potential of lipid-based micelles, liposomes, and SLNs for producing stable re-dispersible spray-dried powders with trehalose or a combination of trehalose and L-leucine. This study provides novel insights into the implementation of spray drying as a technique to enhance long-term stability for these lipid-based nanocarriers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!