Reusing industrial by-products and agricultural waste as supplementary cementitious materials for producing sustainable concrete is one of the most promising ways to reduce cement production and the detrimental effects of concrete constructions on the environment. However, when it comes to preparing self-consolidating concrete (SCC) and mortar (SCMO) containing such materials in high volume, bleeding, and segregation of their fresh mixture are the crucial factors hindering their large-scale application. In this regard, the main aim of this study is to address such issues by designing sustainable SCMO using ground granulated blast furnace slag (GGBS) in high volume and rice husk ash (RHA) with comparatively lower environmental impact and high quality. To achieve this goal, the workability of fresh mixture and all its three main characteristics, including segregation resistance, passing ability, and filling ability, were evaluated with recently developed empirical apparatuses. For this purpose, 12 mixtures with different compositions were prepared to investigate the fresh properties, compressive strength, setting time, and environmental impact index. The results indicate that there are inextricable links between mixing proportions, strength, and carbon emissions of the mixture. Sustainable SCMO with an embodied-CO index lower than 4.5 kg/MPa.m, good workability, and compressive strength of 49.7 MPa was designed by optimizing cementitious content, while the e-CO index of the control mixture was around 8 kg/MPa.m. The addition of GGBFS and RHA not only decreased the e-CO index but also increased the unit cement strength contribution index. The results also indicated that by increasing GGBFS, the fluidity and segregation of the mixture increased while adding RHA increased viscosity and modified bleeding and the segregation index. Moreover, the growth rate of the compressive strength in mixtures containing GGBFS was much higher than that of the control mix at the same age. The promising results of this experimental study indicate that utilization of GGBFS and RHA in SCMO mixture can provide a practical way to reduce the environmental effects of cement production and pave the way for friendly disposal of slag and waste products.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-24219-7DOI Listing

Publication Analysis

Top Keywords

environmental impact
12
compressive strength
12
cement production
8
high volume
8
bleeding segregation
8
sustainable scmo
8
ggbfs rha
8
mixture
6
strength
5
production sustainable
4

Similar Publications

Cancer and Secretomes: HLA-G and Cancer Puzzle.

Adv Exp Med Biol

January 2025

Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.

Among the mechanisms, cancer cells develop to elude immune system, immune regulation and the use of molecules that play important roles in immune escape stand out. One of these molecules, the human leukocyte antigen G (HLA-G), plays an important role in the maintenance of immune tolerance and contributes to the progression of cancer by exerting an immunosuppressive effect. By creating an immunosuppressive field in the microscopic environment of the tumor, the aberrant expression of HLA-G facilitates the evading of cancer cells from the immune system and contributes to the progression of the disease.

View Article and Find Full Text PDF

Boosting the catalytic efficiency of UGT51 for efficient production of rare ginsenoside Rh2.

Folia Microbiol (Praha)

January 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.

Ginsenoside Rh2(S) is well-known for its therapeutic potential against diverse conditions, including some cancers, inflammation, and diabetes. The enzymatic activity of uridine diphosphate glycosyltransferase 51 (UGT51) from Saccharomyces cerevisiae plays a pivotal role in the glycosylation process between UDP-glucose (donor) and protopanaxadiol (acceptor), to form ginsenoside Rh2. However, the catalytic efficiency of the UGT51 has remained a challenging task.

View Article and Find Full Text PDF

Three months before the planned implementation of the European Union Regulation on Deforestation-free products, the European Commission proposed to postpone the implementation by twelve months. The announcement raised the temperature in the debate on this regulation. We put forward suggestions, based on scientific knowledge as well as current EUDR research and implementation projects, on how the 12-month phasing-in period could be used wisely to promote sustainability transitions in deforestation-risk value chains.

View Article and Find Full Text PDF

Hypertension, dyslipidemia, and type 2 diabetes are highly prevalent and poorly controlled cardiometabolic diseases in the Middle East. Therapeutic non-adherence and therapeutic inertia are major contributors to this suboptimal disease control. Regardless of the cardiometabolic disease, evidence-based solutions may be used to improve therapeutic non-adherence and overcome inertia, and thereby help to alleviate the heavy burden of cardiovascular disease in the Middle East.

View Article and Find Full Text PDF

Unlocking a Decade of Research on Embryo-Derived Extracellular Vesicles: Discoveries Made and Paths Ahead.

Stem Cell Rev Rep

January 2025

Department of Internal Medicine, Reproduction and Population Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, Merelbeke, B-9820, Belgium.

Over the past decade, research on embryo-derived extracellular vesicles (EVs) has unveiled their critical roles in embryonic development and intercellular communication. EVs secreted by embryos are nanoscale lipid bilayer vesicles that carry bioactive cargo, including proteins, lipids, RNAs, and DNAs, reflecting the physiological state of the source cells. These vesicles facilitate paracrine and autocrine signaling, influencing key processes such as cell differentiation, embryo viability, and endometrial receptivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!