Fluorescence signal amplification by optical reflection in metal-coated nanowells.

Mikrochim Acta

Department of Chemistry, University of Wyoming, Laramie, WY, 82071, USA.

Published: November 2022

A significant amplification in the fluorescence signal is demonstrated when measured in metal (aluminum)-coated fluidic wells with volumes on the order of a nanoliter or smaller (nanowells). Photolithographic and wet etching procedures were used to fabricate these nanowells on glass substrates followed by vapor deposition of an aluminum layer on them. The fluorescence signal recorded in these structures was enhanced due to the reflection of the incident and emitted radiation by the metal layer as well as focusing of this light by the curvature of the well surface. While the first effect amplified the background signal in the entire assay chamber, the latter one produced signal hotspots around the edges and center of the nanowell. In this work, we were able to realize over a 20-fold enhancement in the fluorescence signal upon quantitating it at the central hotspot of an aluminum-coated circular nanowell with a depth and photo-patterned diameter of 30 µm and 38 µm, respectively. More interestingly, our experiments indicate that this enhancement factor may be further improved by optimizing the curvature of the nanowell surface to merge all the signal hotspots within a smaller detection zone. Finally, quantitative assays using horseradish peroxidase samples were performed on the reported signal enhancement platform to further demonstrate its utility for making sensitive analytical measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-022-05577-yDOI Listing

Publication Analysis

Top Keywords

fluorescence signal
16
signal hotspots
8
signal
7
fluorescence
4
signal amplification
4
amplification optical
4
optical reflection
4
reflection metal-coated
4
metal-coated nanowells
4
nanowells a significant
4

Similar Publications

The role of human epidermal growth factor 2 (HER2) in male breast cancer (MBC) is poorly defined. A comprehensive description of HER2 status was conducted. A total of 6,015 MBC patients from 45 studies and 135 MBC patients with sequencing data were identified.

View Article and Find Full Text PDF

As one of the essential components of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in redox homeostasis and signal transduction processes, and its deviant levels are associated with numerous clinical diseases. Therefore, accurate and rapid detection of intracellular ONOO- levels is crucial for revealing its role in physiological and pathological processes. Herein, we constructed a ratiometric fluorescent probe to detect ONOO- levels in biological systems.

View Article and Find Full Text PDF

Purpose: This study aims to investigate whether zinc ion (Zn) alleviates myocardial ischemia-reperfusion injury (MIRI) through the MAM-associated signaling pathway and to explore its impact on ERS and calcium overload.

Methods: H9C2 cells were cultured in a DMEM supplemented with 10 % fetal bovine serum and 1 % antibiotic solution. A MIRI model was established through simulated ischemia and reoxygenation with Zn treatment in a complete medium.

View Article and Find Full Text PDF

Background-free luminescent and chromatic assay for strong visual detection of creatinine.

Talanta

January 2025

Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China. Electronic address:

Creatinine is an essential biomarker for the clinical diagnosis and treatment of renal insufficiency. Although fluorescent methods are powerful tools for creatinine detection, almost all reported fluorescent probes rely on short-wavelength excitation and a single fluorescent signal, making them susceptible to environmental and operational conditions. In this study, a near-infrared excited, highly sensitive, and multi-output signal sensing system was established using upconversion nanoparticles and 3,5-dinitrobenzoic acid (DNBA) for synergistic luminescent and colorimetric assay for strong visual detection of creatinine.

View Article and Find Full Text PDF

High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!