With regard to the global energy crisis and environmental pollution, ferroelectric thin films with unique polarization behavior have garnered considerable attention for energy storage and electrocaloric refrigeration. Herein, a series of (1 - )BiNaTiO-Ba(ZrTi)O ( = 0.3-0.9; (1 - )BNT-BZT) films were fabricated on Pt(111)/Ti/SiO/Si substrates. Incorporating BZT can tune the polarization behavior and phase transition temperature of BNT. A high recoverable energy density ≈ 82 J cm and optimized efficiency ≈ 81% were realized for the (1 - )BNT-BZT thin film with = 0.7. The thin film exhibits excellent stability in energy storage performance, a wide working frequency range (0.5-20 kHz), a broad operating temperature window (20-200 °C), and reduplicative switching cycles (10 cycles). In addition, the 0.5BNT-0.5BZT film exhibits a desirable electrocaloric effect with a large adiabatic temperature change (Δ ≈ -22.9 K) and isothermal entropy change (Δ ≈ 33.4 J K kg) near room temperature under a moderate applied electric field of 2319 kV cm. These remarkable performances signify that the (1 - )BNT-BZT system is a promising multifunctional electronic material for energy storage and solid-state cooling applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c16006 | DOI Listing |
Molecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.
View Article and Find Full Text PDFRSC Adv
January 2025
Plasmonic Nanomaterials Laboratory, Department of Nanoscience and Technology, PSG Institute of Advanced Studies Peelamedu Coimbatore-641 004 Tamilnadu India
Escalating energy demands have often ignited ground-breaking innovations in the current era of electrochemical energy storage systems. Supercapacitors (SCs) have emerged as frontrunners in this regard owing to their exclusive features such ultra-high cyclic stability, power density, and ability to be derived from sustainable sources. Despite their promising attributes, they typically fail in terms of energy density, which poses a significant hindrance to their widespread commercialization.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, UK.
This review explores the behavior of low-concentration CO (LCC) in various energy media, such as solid adsorbents, liquid absorbents, and catalytic surfaces. It delves into the mechanisms of diffusion, adsorption, and catalytic reactions, while analyzing the potential applications and challenges of these properties in technologies like air separation, compressed gas energy storage, and CO catalytic conversion. Given the current lack of comprehensive analyses, especially those encompassing multiscale studies of LCC behavior, this review aims to provide a theoretical foundation and data support for optimizing CO capture, storage, and conversion technologies, as well as guidance for the development and application of new materials.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.
Metal-free photocatalysts derived from earth-abundant elements have drawn significant attention owing to their ample supply for potential large-scale applications. However, it is still challenging to achieve highly efficient photocatalytic performance owing to their sluggish charge separation and lack of active catalytic sites. Herein, we designed and constructed a series of covalently bonded organic semiconductors to enhance water splitting and phenol degradation.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Power Station Energy Transfer Conversion and System of Ministry of Education and School of Energy Power and Mechanical Engineering, and Beijing Laboratory of New Energy Storage Technology, North China Electric Power University, Beijing, 102206, China.
Co-free high-Ni layered cathode materials LiNiMeO (Me = Mn, Mg, Al, etc.) are a key part of the next-generation high-energy lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the hindered Li kinetics and the high reactivity of Ni result in poor rate performance and unsatisfied cycling stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!