Near-Infrared Emissive Hypervalent Compounds with Germanium(IV)-Fused Azobenzene π-Conjugated Systems.

Chemistry

Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.

Published: February 2023

A novel molecular design for showing near-infrared (NIR) emission is still required for satisfying growing demands for NIR-light technology. In this research, hypervalent compounds with germanium (Ge)-fused azobenzene (GAz) scaffolds were discovered that can exhibit NIR emission (λ =690∼721 nm, Φ =0.03∼0.04) despite compact π-conjugated systems. The unique optical properties are derived from the trigonal bipyramidal geometry of the hypervalent compounds constructed by combination of Ge and azobenzene-based tridentate ligands. Experimental and theoretical calculation results disclosed that the germanium-nitrogen (Ge-N) coordination at the equatorial position strongly reduces the energy level of the LUMO (lowest unoccupied molecular orbital), and the three-center four-electron (3 c-4 e) bond in the apical position effectively rises the energy level of the HOMO (highest occupied molecular orbital). It is emphasized that large narrowing of the HOMO-LUMO energy gap is achieved just by forming the hypervalent bond. In addition, the narrow-energy-gap property can be enhanced by extension of π-conjugation. The obtained π-conjugated polymer shows efficient NIR emission both in solution (λ =770 nm and Φ =0.10) and film (λ =807 nm and Φ =0.04). These results suggest that collaboration of a hypervalent bond and a π-conjugated system is a novel and effective strategy for tuning electronic properties even in the NIR region.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202203423DOI Listing

Publication Analysis

Top Keywords

hypervalent compounds
12
nir emission
12
π-conjugated systems
8
energy level
8
molecular orbital
8
hypervalent bond
8
hypervalent
5
near-infrared emissive
4
emissive hypervalent
4
compounds germaniumiv-fused
4

Similar Publications

The 2-(4-hydroxyphenoxy)benzamide scaffold is frequently found in a variety of bioactive compounds, displaying a broad spectrum of properties, such as antibacterial and antitumor effects. In this study, we developed a new method for synthesizing 2-(4-hydroxyphenoxy)benzamide derivatives from 2-aryloxybenzamide via a PhIO-mediated oxidation reaction. The optimal reaction conditions were established as follows: TFA was used as the solvent, PhIO served as the oxidant with a substrate-to-oxidant ratio of 1:2, and the reaction was conducted at room temperature.

View Article and Find Full Text PDF

Program-Modulated Kinetics of Perovskite-Film Growth by Molecular "Thruster" for High-Efficiency and Stable Perovskite Solar Cells.

Angew Chem Int Ed Engl

December 2024

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.

The rapid reaction between lead iodide (PbI) and formamidinium iodide (FAI) complicates the fabrication of high-quality formamidinium lead iodide (FAPbI) films. Conventional methods, such as using nonvolatile small molecular additives to slow the reaction, often result in buried interfacial voids and molecule diffusion, compromising the devices' operational stability. In this study, we introduced a molecular "thruster"-a hypervalent iodine (III) compound with three carbonyl groups and a C-I bond-that possesses coordination and dissociation abilities, enabling programed modulation of perovskite-film growth kinetics.

View Article and Find Full Text PDF

Synthesis of Unsymmetrical Urea Derivatives via PhI(OAc) and Application in Late-Stage Drug Functionalization.

Molecules

November 2024

Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden.

Unsymmetrical urea derivatives are essential structural motifs in a wide array of biologically significant compounds. Despite the well-established methods for synthesizing symmetrical ureas, efficient strategies for the synthesis of unsymmetrical urea derivatives remain limited. In this study, we present a novel approach for the synthesis of unsymmetrical urea derivatives through the coupling of amides and amines.

View Article and Find Full Text PDF

Porous organic polymers (POPs) are novel emergent materials for heterogeneous organocatalysis owing to their remarkable physicochemical stabilities. Through a bottom-up approach entailing diligent design of twisted biaryl building blocks with in-built o-iodobenzoic acid (IA) moieties, a series of POP precatalysts, p-OMeIA-POP, DiMeIA-POP, and m-OMeIA-POP, were synthesized by employing Friedel-Crafts alkylation. These IA-POP precatalysts can undergo in situ oxidation in the presence of Oxone® to generate hypervalent iodine(V) species (λ5-iodanes), in particular, modified o-iodoxybenzoic acid, popularly termed IBX, which mediates diverse oxidative transformations.

View Article and Find Full Text PDF

A novel study on the hypervalent iodine-mediated polyfluoroalkylation of sulfoxonium ylides was developed. Sulfoxonium ylides, known for their versatility and stability, are promising substrates for numerous transformations in synthetic chemistry. This report demonstrates the successful derivatization of sulfoxonium ylides with trifluoroethyl or tetrafluoropropyl groups, and provides valuable insights into the scope and limitations of this approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!