Kruppel-like factors (KLFs) are a set of transcription factors (TFs) involved in the regulation of many basic biological processes, and recent studies suggested that nanoparticles (NPs) were capable to change KLFs in different models even at non-cytotoxic concentrations. In this study, we repeatedly exposed 3D Caco-2 spheroids and mice to TiO NPs, one of the most frequently used metal oxide NPs, and investigated the changes of KLF-signaling pathways based on RNA-sequencing. Although the internalization of TiO NPs did not induce cytotoxicity in vitro, repeated exposure (three times within 7 days) to 15.7 ng/ml TiO NPs increased KLF4 but decreased KLF6. Consistently, KLF4/KLF6-regulated gene ontology terms were altered, including those involved in the regulation of gene expression. We further verified that repeated exposure to 15.7 ng/ml TiO NPs increased the expression of KLF4 and proto-oncogene, bHLH transcription factor (MYC), but decreased the expression of KLF6 and activating transcription factor 3 (ATF3). But with the increase of NP concentrations, the expression of these genes was decreased. In mice following intragastrical exposure to 4.39 and 43.9 mg/kg TiO NPs (once a day for 5 continuous days), we observed increased expression of klf4, klf6, myc, and atf3, along with morphological changes of intestines. We concluded that repeated exposure to low levels of TiO NPs altered KLF-signaling pathways in intestinal cells both in vitro and in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jat.4420 | DOI Listing |
J Hazard Mater
January 2025
Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil. Electronic address:
Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO NPs ingestion (1.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 17, 10-720 Olsztyn, Poland.
This study investigated the effects of various titanium nanoparticles (TiONPs) on the structure, function, and trophic levels of the wheat rhizobiome. In contrast to the typically toxic effects of small nanoparticles (~10 nm), this research focused on molecular TiO and larger nanoparticles, as follows: medium-sized (68 nm, NPs1) and large (>100 nm, NPs2). The results demonstrated significant yet diverse impacts of different TiO forms on the rhizosphere microbiota.
View Article and Find Full Text PDFNanoImpact
January 2025
Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada. Electronic address:
Titanium dioxide (TiO) nanoparticles (NPs) are incorporated into numerous consumer products yet data as to potential adverse health effects remains inconclusive. In this paper we physically characterize 16 nanoforms of TiO from different manufacturers of different size, crystalline structure and with surface chemistry. Physical measurements of the particles were performed and compared with those provided by manufacturers revealing several discrepancies.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Molecular Science, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden.
The recent COVID-19 pandemic has set a strong quest for advanced understanding of possible tracks in abating and eliminating viral infections. In the view that several families of "pristine" small oxide nanoparticles (NPs) have demonstrated viricidal activity against SARS-CoV-2, we studied the effect of two NPs, with presumably different reactivity, on two viruses aiming to evaluate two "primary suspect" routes of their antiviral activity, either specific blocking of surface proteins or causing membrane disruption. The chosen NPs were non-photoactive 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!