Functional nanomaterials as nanodrugs based on the self-assembly of inorganics, polymers, and biomolecules have showed wide applications in biomedicine and tissue engineering. Ascribing to the unique biological, chemical, and physical properties of peptide molecules, peptide is used as an excellent precursor material for the synthesis of functional nanodrugs for highly effective cancer therapy. Herein, recent progress on the design, synthesis, functional regulation, and cancer bioimaging and biotherapy of peptide-based nanodrugs is summarized. For this aim, first molecular design and controllable synthesis of peptide nanodrugs with 0D to 3D structures are presented, and then the functional customization strategies for peptide nanodrugs are presented. Then, the applications of peptide-based nanodrugs in bioimaging, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT) are demonstrated and discussed in detail. Furthermore, peptide-based drugs in preclinical, clinical trials, and approved are briefly described. Finally, the challenges and potential solutions are pointed out on addressing the questions of this promising research topic. This comprehensive review can guide the motif design and functional regulation of peptide nanomaterials for facile synthesis of nanodrugs, and further promote their practical applications for diagnostics and therapy of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202205787DOI Listing

Publication Analysis

Top Keywords

peptide-based nanodrugs
12
nanodrugs
8
molecular design
8
design synthesis
8
bioimaging biotherapy
8
synthesis functional
8
functional regulation
8
peptide nanodrugs
8
synthesis
5
functional
5

Similar Publications

Simplified biomimetic peptide-based vehicle for enhanced tumor penetration and rapid enzyme-induced drug release.

J Colloid Interface Sci

January 2025

State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China. Electronic address:

Various nanodrug vehicles were well-designed with complicated functions for tumor therapy. However, the unsatisfactory tumor delivery efficiency and uncertain off-target release became the stumbling block of the nanodrugs on the way to the clinic. Inspired by efficient tumor targeting ability of albumin, we reported a simplified biomimetic peptide-based vehicle synthesized by copolymerizing L-glutamyl-L-lysine unit (EK dimer, an intrinsic surface peptide pair from albumin) with L-phenylalanine (F) to encapsulate doxorubicin (Dox).

View Article and Find Full Text PDF

Autophagy activator-loaded bicomponent peptide nanocarriers for phototherapy-triggered immunity enhancement against metastatic breast cancer.

J Control Release

December 2024

Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China. Electronic address:

Article Synopsis
  • Mild autophagy can weaken the immune response against tumors during immunogenic cell death (ICD), so researchers developed a peptide-based nanocarrier to address this issue.
  • The new nanocarrier (PPNPs@STF) uses a hyperautophagy activator (STF-62247) and targets tumors while enhancing immune responses through near-infrared (NIR) photo/immunotherapy.
  • In tests with tumor-bearing mice, PPNPs@STF effectively reduced primary and metastatic breast tumors while minimizing side effects, suggesting it can significantly improve antitumor immune responses.
View Article and Find Full Text PDF

Background: Discrepancies in the utilization of reactive oxygen species (ROS) between cancer cells and their normal counterparts constitute a pivotal juncture for the precise treatment of cancer, delineating a noteworthy trajectory in the field of targeted therapies. This phenomenon is particularly conspicuous in the domain of nano-drug precision treatment. Despite substantial strides in employing nanoparticles to disrupt ROS for cancer therapy, current strategies continue to grapple with challenges pertaining to efficacy and specificity.

View Article and Find Full Text PDF

Revealing the dynamic mechanism of cell-penetrating peptides across cell membranes at the single-molecule level.

J Mater Chem B

June 2024

School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China.

Cell-penetrating peptides (CPPs) have gained prominence in cellular drug delivery due to their extremely low toxicity and rapid cell internalization properties. Understanding the effect of CPPs' physicochemical properties on trans-membrane behavior will provide a better screening scheme for designing effective CPP-conjugated nano-drugs. Herein, the efficiency of the CPPs interacting with the cell membrane and the subsequent trans-membrane is revealed at the single-molecule level using single-molecule force spectroscopy (SMFS) and force tracing technique based on atomic force spectroscopy (AFM).

View Article and Find Full Text PDF

As an essential intracellular immune activation pathway, the cGAS-STING pathway has attracted broad attention in cancer treatment. However, low bioavailability, nonspecificity, and adverse effects of small molecule STING agonists severely limit their therapeutic efficacy and in vivo application. In this study, a peptide-based STING agonist is first proposed, and KLA is screened out to activate the cGAS-STING pathway by promoting mitochondrial DNA (mtDNA) leakage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!