Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thermoelectric (TE) performance of a specific semicrystalline polymer is studied experimentally only in a limited range of doping levels with molecular doping methods. The doping level is finely controlled via in situ electrochemical doping in a wide range of carrier concentrations with an electrolyte ([PMIM] [TFSI] )-gated organic electrochemical transistor system. Then, the charge generation/transport and TE properties of four p-type semicrystalline polymers are analyzed and their dynamic changes of crystalline morphologies and local density of states (DOS) during electrochemical doping are compared. These polymers are synthesized based on poly[(2,5-bis(2-alkyloxy)phenylene)-alt-(5,6-difluoro-4,7-di(thiophene-2-yl)benzo[c][1,2,5]thiadiazole)] by varying side chains: With oligoethylene glycol (OEG) substituents, facile p-doping is achieved because of easy penetration of TFSI ions into the polymer matrix. However, the charge transport is hindered with longer OEG chains length because of the enhanced insulation. Therefore, with the shortest OEG substituents the electrical conductivity (30.1 S cm ) and power factor (2.88 µW m K ) are optimized. It is observed that all polymers exhibit p- to n-type transition in Seebeck coefficients in heavily doped states, which can be achieved by electrochemical doping. These TE behaviors are interpreted based on the relation between the localized DOS band structure and molecular packing structure during electrochemical doping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smtd.202201145 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!