Theory of radio-frequency pulses on periodically driven three-level systems: challenges and perspectives.

Phys Chem Chem Phys

Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Manauli P.O. Box-140306, Mohali, Punjab, India.

Published: December 2022

Understanding the evolution of nuclear spins subjected to radio-frequency (RF) pulses in periodically driven multi-level systems has remained a challenging problem in magnetic resonance. Here in this report, we focus on a formal description of the excitation of double-quantum (DQ) transitions in three-level systems. Through generalized time-propagators derived from Floquet theory, the excitation during a pulse at non-stroboscopic time intervals is analysed through expressions invoking the density operator formalism. In contrast to numerical simulations, the analytical expressions provide insights into the excitation phenomenon as well as facilitating the faster optimization of experiments and quantification of experimental data. Through rigorous comparison with simulations, the suitability and convergence criteria in the analytical methods are examined over a wide range of parameters (both internal and external) with appropriate examples.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cp03906kDOI Listing

Publication Analysis

Top Keywords

radio-frequency pulses
8
pulses periodically
8
periodically driven
8
three-level systems
8
theory radio-frequency
4
driven three-level
4
systems challenges
4
challenges perspectives
4
perspectives understanding
4
understanding evolution
4

Similar Publications

Ultra-high-resolution brain MRI at 0.55T: bSTAR and its application to magnetization transfer ratio imaging.

Z Med Phys

January 2025

Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.

Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.

Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.

View Article and Find Full Text PDF

Lung ultrasound is a growing modality in clinics for diagnosing and monitoring acute and chronic lung diseases due to its low cost and accessibility. Lung ultrasound works by emitting diagnostic pulses, receiving pressure waves and converting them into radio frequency (RF) data, which are then processed into B-mode images with beamformers for radiologists to interpret. However, unlike conventional ultrasound for soft tissue anatomical imaging, lung ultrasound interpretation is complicated by complex reverberations from the pleural interface caused by the inability of ultrasound to penetrate air.

View Article and Find Full Text PDF

Background: The arterial stiffening is attributed to the intrinsic structural stiffening and/or load-dependent stiffening by increased blood pressure (BP). The respective lifetime alterations and major determinants of the two components with normal aging are not clear.

Methods: A total of 3053 healthy adults (1922 women) aged 18-79 years were enrolled.

View Article and Find Full Text PDF

Annealing Effect on Linear and Ultrafast Nonlinear Optical Properties of BiTe Thin Films.

Materials (Basel)

December 2024

Department of Optical Science and Engineering, Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Fudan University, Shanghai 200433, China.

In recent years, the fabrication of materials with large nonlinear optical coefficients and the investigation of methods to enhance nonlinear optical performance have been in the spotlight. Herein, the bismuth telluride (BiTe) thin films were prepared by radio-frequency magnetron sputtering and annealed in vacuum at various temperatures. The structural and optical properties were characterized and analyzed using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry, and UV/VIS/NIR spectrophotometry.

View Article and Find Full Text PDF

Premature ventricular contractions (PVCs) are a common finding in patients with surgically repaired congenital heart defects including transposition of the great arteries (D-TGA). While often asymptomatic, PVCs can sometimes lead to palpitations, dyspnea, and hemodynamic compromise, requiring therapeutic intervention. The arterial switch operation is the preferred treatment for D-TGA, but these patients have a 2% incidence of ventricular arrhythmias and 1% incidence of sudden cardiac death post-operatively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!