Regenerative inflammation: When immune cells help to re-build tissues.

FEBS J

Department of Biochemistry and Molecular Biology, Nuclear Receptor Research Laboratory, Faculty of Medicine, University of Debrecen, Hungary.

Published: April 2024

Inflammation is an essential immune response critical for responding to infection, injury and maintenance of tissue homeostasis. Upon injury, regenerative inflammation promotes tissue repair by a timed and coordinated infiltration of diverse cell types and the secretion of growth factors, cytokines and lipids mediators. Remarkably, throughout evolution as well as mammalian development, this type of physiological inflammation is highly associated with immunosuppression. For instance, regenerative inflammation is the consequence of an in situ macrophage polarization resulting in a transition from pro-inflammatory to anti-inflammatory/pro-regenerative response. Immune cells are the first responders upon injury, infiltrating the damaged tissue and initiating a pro-inflammatory response depleting cell debris and necrotic cells. After phagocytosis, macrophages undergo multiple coordinated metabolic and transcriptional changes allowing the transition and dictating the initiation of the regenerative phase. Differences between a highly efficient, complete ad integrum tissue repair, such as, acute skeletal muscle injury, and insufficient regenerative inflammation, as the one developing in Duchenne Muscular Dystrophy (DMD), highlight the importance of a coordinated response orchestrated by immune cells. During regenerative inflammation, these cells interact with others and alter the niche, affecting the character of inflammation itself and, therefore, the progression of tissue repair. Comparing acute muscle injury and chronic inflammation in DMD, we review how the same cells and molecules in different numbers, concentration and timing contribute to very different outcomes. Thus, it is important to understand and identify the distinct functions and secreted molecules of macrophages, and potentially other immune cells, during tissue repair, and the contributors to the macrophage switch leveraging this knowledge in treating diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10225019PMC
http://dx.doi.org/10.1111/febs.16693DOI Listing

Publication Analysis

Top Keywords

regenerative inflammation
20
immune cells
16
tissue repair
16
inflammation
8
muscle injury
8
cells
7
regenerative
6
tissue
6
immune
5
injury
5

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Ageing changes the adult brain at the molecular, cellular and functional levels, driving regenerative decline, inflammation, cognitive impairments and susceptibility to dementia-related neurodegenerative disorders, such as Alzheimer's disease (AD). There is overwhelming evidence that regular physical exercise can counteract cognitive decline in both healthy ageing and in neurodegenerative conditions such as AD, with exerkines, the circulating humoral factors that are secreted into the blood stream in response to exercise, emerging as likely mediators of this response. However, the source and identity of these exerkines remain unclear.

View Article and Find Full Text PDF

Protective effects of methylnissolin and methylnissolin-3-O-β-d-glucopyranoside on TNF-α-induced inflammation in human dermal fibroblasts.

Toxicol In Vitro

December 2024

Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea. Electronic address:

Methylnissolin-3-O-β-d-glucopyranoside (MNG) and methylnissolin (MN) are pterocarpan derivatives that are found in plants, such as Astragalus membranaceus. There are limited existing studies on the potential health benefits of MNG, and currently there is no evidence to suggest that MNG has any impact on skin-aging. Tumor necrosis factor-alpha (TNF-α) plays a significant role in skin aging by promoting chronic inflammation, damaging skin cells, and impairing the skin's natural repair mechanisms.

View Article and Find Full Text PDF

The gut microbiome, a complex ecosystem of microorganisms in the digestive tract, has emerged as a critical factor in human health, influencing metabolic, immune, and neurological functions. This review explores the connection between the gut microbiome and orthopedic health, examining how gut microbes impact bone density, joint integrity, and skeletal health. It highlights mechanisms linking gut dysbiosis to inflammation in conditions such as rheumatoid arthritis and osteoarthritis, suggesting microbiome modulation as a potential therapeutic strategy.

View Article and Find Full Text PDF

Brain organoid methodologies to explore mechanisms of disease in progressive multiple sclerosis.

Front Cell Neurosci

December 2024

Department of Clinical Neurosciences and NIHR Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom.

Multiple sclerosis (MS), a debilitating autoimmune disorder targeting the central nervous system (CNS), is marked by relentless demyelination and inflammation. Clinically, it presents in three distinct forms: relapsing-remitting MS (RRMS), primary progressive MS (PPMS), and secondary progressive MS (SPMS). While disease-modifying therapies (DMTs) offer some relief to people with RRMS, treatment options for progressive MS (pMS) remain frustratingly inadequate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!