The world experienced the life-threatening COVID-19 disease worldwide since its inversion. The whole world experienced difficult moments during the COVID-19 period, whereby most individual lives were affected by the disease socially and economically. The disease caused millions of illnesses and hundreds of thousands of deaths worldwide. To fight and control the COVID-19 disease intensity, mathematical modeling was an essential tool used to determine the potentiality and seriousness of the disease. Due to the effects of the COVID-19 disease, scientists observed that vaccination was the main option to fight against the disease for the betterment of human lives and the world economy. Unvaccinated individuals are more stressed with the disease, hence their body's immune system are affected by the disease. In this study, the deterministic model of COVID-19 with six compartments was proposed and analyzed. Analytically, the next-generation matrix method was used to determine the basic reproduction number ( ). Detailed stability analysis of the no-disease equilibrium ( ) of the proposed model to observe the dynamics of the system was carried out and the results showed that is stable if and unstable when . The Bayesian Markov Chain Monte Carlo (MCMC) method for the parameter identifiability was discussed. Moreover, the sensitivity analysis of showed that vaccination was an essential method to control the disease. With the presence of a vaccine in our model, the results showed that , which means COVID-19 is fading out of the community and hence minimizes the transmission. Moreover, in the absence of a vaccine in our model, , which means the disease is in the community and spread very fast. The numerical simulations demonstrated the importance of the proposed model because the numerical results agree with the sensitivity results of the system. The numerical simulations also focused on preventing the disease to spread in the community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678855PMC
http://dx.doi.org/10.1016/j.chaos.2022.112920DOI Listing

Publication Analysis

Top Keywords

disease
12
covid-19 disease
12
mathematical modeling
8
model covid-19
8
proposed model
8
vaccine model
8
numerical simulations
8
covid-19
7
model
5
modeling vaccination
4

Similar Publications

Marek's Disease (MD), which can result in neurological damage and tumour formation, has large effects on the economy and animal welfare of the poultry industry worldwide. Previously, we mapped autosomal MD QTL regions (QTLRs) by individual genotyping of an F population from a full-sib advanced intercross line. We further mapped MD QTLRs on the chicken Z chromosome (GGZ) using the same F population, and by selective DNA pooling (SDP) of 8 elite egg production lines.

View Article and Find Full Text PDF

The aetiology of Alzheimer's disease (AD) and Parkinson's disease (PD) are unknown and tend to manifest at a late stage in life; even though these neurodegenerative diseases are caused by different affected proteins, they are both characterized by neuroinflammation. Links between bacterial and viral infection and AD/PD has been suggested in several studies, however, few have attempted to establish a link between fungal infection and AD/PD. In this study we adopted a nanopore-based sequencing approach to characterise the presence or absence of fungal genera in both human brain tissue and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.

View Article and Find Full Text PDF

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

DCLRE1B as a novel prognostic biomarker associated with immune infiltration: a pancancer analysis.

Sci Rep

December 2024

Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.

The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!