Fear conditioning in invertebrates.

Front Behav Neurosci

Biological Sciences Graduate Program, University of California, San Diego, La Jolla, San Diego, CA, United States.

Published: November 2022

AI Article Synopsis

  • Learning and predicting threats is crucial for animal survival, and studies in invertebrates show that the basic mechanisms of learning and memory are similar across species.
  • Research on fear conditioning using electric shocks reveals that neurotransmitters like serotonin and dopamine play key roles in processing aversive experiences and altering behavior, with long-term changes linked to gene expression.
  • This review also explores how predator-prey dynamics can enhance our understanding of fear-related behaviors and suggests avenues for future research in invertebrate fear conditioning.

Article Abstract

Learning to identify and predict threats is a basic skill that allows animals to avoid harm. Studies in invertebrates like , and have revealed that the basic mechanisms of learning and memory are conserved. We will summarize these studies and highlight the common pathways and mechanisms in invertebrate fear-associated behavioral changes. Fear conditioning studies utilizing electric shock in and have demonstrated that serotonin or dopamine are typically involved in relaying aversive stimuli, leading to changes in intracellular calcium levels and increased presynaptic neurotransmitter release and short-term changes in behavior. Long-term changes in behavior typically require multiple, spaced trials, and involve changes in gene expression. studies have demonstrated these basic aversive learning principles as well; however, fear conditioning has yet to be explicitly demonstrated in this model due to stimulus choice. Because predator-prey relationships can be used to study learned fear in a naturalistic context, this review also summarizes what is known about predator-induced behaviors in these three organisms, and their potential applications for future investigations into fear conditioning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9686301PMC
http://dx.doi.org/10.3389/fnbeh.2022.1008818DOI Listing

Publication Analysis

Top Keywords

fear conditioning
16
changes behavior
8
fear
5
changes
5
conditioning invertebrates
4
invertebrates learning
4
learning identify
4
identify predict
4
predict threats
4
threats basic
4

Similar Publications

Cd99l2 regulates excitatory synapse development and restrains immediate-early gene activation.

Cell Rep

January 2025

Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea; Neuroscience Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea; Transplantation Research Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea. Electronic address:

Cd99 molecule-like 2 (Cd99l2) is a type I transmembrane protein that plays a role in the transmigration of leukocytes across vascular endothelial cells. Despite its high expression in the brain, the role of Cd99l2 remains elusive. We find that Cd99l2 is expressed primarily in neurons and positively regulates neurite outgrowth and the development of excitatory synapses.

View Article and Find Full Text PDF

People living with HIV (PLWH) experience HIV-associated neurocognitive disorders (HAND), even though combination antiretroviral therapy (cART) suppresses HIV replication. HIV-1 transactivator of transcription (HIV-1 Tat) contributes to the development of HAND through neuroinflammatory and neurotoxic mechanisms. C-C chemokine 5 receptor (CCR5) is important in immune cell targeting and is a co-receptor for HIV viral entry into CD4+ cells.

View Article and Find Full Text PDF

The medial prefrontal cortex (mPFC) is required for learning associations that determine whether animals approach or avoid potential threats in the environment. Dopaminergic (DA) projections from the ventral tegmental area (VTA) to the mPFC carry information, particularly about aversive outcomes, that may inform prefrontal computations. But the role of prefrontal DA in learning based on aversive outcomes remains poorly understood.

View Article and Find Full Text PDF

Fear extinction retention in children, adolescents, and adults.

Dev Cogn Neurosci

January 2025

Department of Medical Sciences, Experimental Cognitive and Affective Neuroscience Lab, Uppsala University, Uppsala, Sweden. Electronic address:

Past results suggest that fear extinction and the return of extinguished fear are compromised in adolescents. However, findings have been inconclusive as there is a lack of fear extinction and extinction retention studies including children, adolescents and adults. In the present study, 36 children (6-9 years), 40 adolescents (13-17 years) and 44 adults (30-40 years), underwent a two-day fear conditioning task.

View Article and Find Full Text PDF

Food neophobia and pickiness are the resistance or refusal to eat and/or avoid trying new foods due to a strong reaction of fear towards the food or an entire group of foods. This systematic review aims to assess evidence on the risk factors and effects of food neophobia and picky eating in children and adolescents, giving elements to avoid the lack of some foods that can cause nutritional deficiencies, leading to future pathologies when they are adults. A systematic literature search was performed in Medlars Online International Literature (MEDLINE) via Pubmed and EBSCOhost, LILACS and IBECS via Virtual Health Library (VHL), Scopus, and Google Scholar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!