Background & Aims: Sarcopenia is an age-related disease that increases the risk of falls and fractures in older adults. However, there is no blood biochemical marker to help to predict or diagnose sarcopenia in clinical practice. Soluble interleukin 2 receptor (sIL-2R) was reported to be associated with muscle satellite cell dysfunction which played an important role in the pathogenesis of sarcopenia. Thereby, we aimed to explore the association between serum sIL-2R and sarcopenia in older adults at high risk of fractures.
Methods: A total of 429 hospitalized older adults (age ≥55 years) were enrolled in this cross-sectional study (mean age = 66.62 ± 6.59 years; 62.7% female). Logistic regression analysis was performed to assess the association of sIL-2R with sarcopenia, muscle mass, muscle strength, and physical performance, respectively. The optimal models for the diagnosis of sarcopenia and low hand grip strength (HGS) were established by multivariable binary logistic regression analysis with backward selection, and further were evaluated for the diagnostic values by receiver operating characteristic (ROC) curve.
Results: Higher sIL-2R levels were found in sarcopenia than no-sarcopenia group in male (median 421 U/mL (interquartile range [IQR] 217 U/mL) vs median 362 U/mL (IQR 157 U/mL); n = 77 vs 83; < 0.01). Compared to the lowest sIL-2R tertile, the highest tertile of sIL-2R was independently associated with the risk of low HGS (odds ratio [OR] 4.608, 95% confidence interval [CI] 1.673-12.695) and the risk of sarcopenia (OR 3.306, 95% CI 1.496-7.302) in men. ROC curves revealed that the Area Under the Curve (AUC) of the optimal models for diagnosing sarcopenia and low HGS was 0.752 and 0.846.
Conclusion: Our results suggest that serum sIL-2R is the independent risk factor for sarcopenia and low muscle strength only in men. sIL-2R may be developed to be a biochemical marker for sarcopenia and low muscle strength diagnoses in older men at high risk of fractures, but more prospective studies are needed to prove it.
The Translational Potential Of This Article: Our results showed that the highest tertile of sIL-2R was independent of low risk of HGS and sarcopenia in men, compared to the lowest tertile. As the population ages, sIL-2R may become a potential diagnostic tool for predicting low HGS and sarcopenia among men at high risk of fractures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674866 | PMC |
http://dx.doi.org/10.1016/j.jot.2022.10.017 | DOI Listing |
Infect Dis (Lond)
January 2025
Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA.
Background: Whether a detected virus or bacteria is a pathogen that may require treatment, or is merely a commensal 'passenger', remains confusing for many infections. This confusion is likely to increase with the wider use of multi-pathogen PCR.
Objectives: To propose a new statistical procedure to analyse and present data from case-control studies clarifying the probability of causality.
Calcif Tissue Int
January 2025
Endocrinology Department, School of Medicine, Pontificia Universidad Católica de Chile, Av. Diagonal Paraguay 262, Cuarto Piso, Santiago, Chile.
X-linked hypophosphatemia (XLH) is a rare metabolic disorder characterized by elevated FGF23 and chronic hypophosphatemia, leading to impaired skeletal mineralization and enthesopathies that are associated with pain, stiffness, and diminished quality of life. The natural history of enthesopathies in XLH remains poorly defined, partly due to absence of a sensitive quantitative tool for assessment and monitoring. This study investigates the utility of 18F-NaF PET/CT scans in characterizing enthesopathies in XLH subjects.
View Article and Find Full Text PDFOrv Hetil
January 2025
3 Pécsi Tudományegyetem, Általános Orvostudományi Kar, Sebészeti Klinika Pécs Magyarország.
J Math Biol
January 2025
Institut universitaire de France (IUF), Paris, France.
We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!