Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9682004PMC
http://dx.doi.org/10.3389/fonc.2022.1020907DOI Listing

Publication Analysis

Top Keywords

imaging hypoxia
4
hypoxia endometrial
4
endometrial cancer
4
cancer done?
4
imaging
1
endometrial
1
cancer
1
done?
1

Similar Publications

Quantification of Vascular Remodeling and Sinusoidal Capillarization to Assess Liver Fibrosis with Photoacoustic Imaging.

Radiology

January 2025

From the Department of Radiology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics, Guangdong Province), Guangzhou, China (W.L., L.S., R.Z., Y.Z.); and Medical Research Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Zhongshan 2nd Rd, Yuexiu District, Guangzhou 510000, People's Republic of China (J.L., H.L., X.Z., F.X., T.S., K.L., L.N.).

Background Photoacoustic microscopy (PAM) can be used to detect strong absorption from endogenous and exogenous contrast material, making it promising for detailed structural and functional imaging of hepatic sinusoids, including dynamic visualization of permeability. Purpose To evaluate whether PAM-based quantitative parameters of liver function and integrity (lacunarity, blood oxygen saturation [Sao], and Evans blue [EB] permeability) are associated with histopathologic indexes of fibrosis in a mouse model. Materials and Methods Between October 2022 and July 2023, a total of 35 male C57BL/6 mice were included in this study and received intraperitoneal injection of carbon tetrachloride to establish mouse models of progressive liver fibrosis, with seven mice in each group.

View Article and Find Full Text PDF

The authors regret the paper was published with an error in Figure 3B sh-NC+HI group. The H&E image in 3B sh-NC+HI group should be corrected as follows. This correction has no influence on the conclusion and the main text of the article.

View Article and Find Full Text PDF

A hypoxia-targeting and hypoxia-responsive nano-probe for tumor detection and early diagnosis.

Biomater Sci

January 2025

Zhejiang Key Laboratory of Smart BioMaterials, and College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.

Accurate imaging of tumor hypoxia is critical for early cancer diagnosis and clinical outcomes, highlighting the great need for its detection specificity and sensitivity. In this report, we propose a probe (HTRNP) that simultaneously has hypoxia-targeting and hypoxia-responsive capabilities to enhance the tumor hypoxia imaging efficiency. HTRNP was successfully prepared through the encapsulation of Pt(II)-tetrakis(pentafluorophenyl)porphyrin (PtPFPP), which exhibits hypoxia-dependent phosphorescence, within the amphiphilic block copolymer OPDMA-PF, which has hypoxia-targeting tertiary amine -oxide moieties and hydrophobic perfluorobenzene ring structures, which highly improved the loading content and water solubility of PtPFPP.

View Article and Find Full Text PDF

Early diagnosis of pancreatic ductal adenocarcinoma (PDAC) is challenging because of its depth, which often leads to misdiagnosis during ultrasound examinations. The unique PDAC tumor microenvironment (TME) is characterized by significant fibrous tissue growth, and high interstitial pressure hinders drug penetration into tumors. Additionally, hypoxia and immune suppression within the tumor contribute to poor responses to radiotherapy and chemotherapy, ultimately leading to an unfavorable prognosis.

View Article and Find Full Text PDF

State-dependent neurovascular modulation induced by transcranial ultrasound stimulation.

Med Biol Eng Comput

January 2025

School of Biomedical Engineering, Shanghai Jiao Tong University, No.1954 Huashan Road, Shanghai, 200030, Shanghai, China.

Previous studies reported baseline state-dependent effects on neural and hemodynamic responses to transcranial ultrasound stimulation. However, due to neurovascular coupling, neither neural nor hemodynamic baseline alone can fully explain the ultrasound-induced responses. In this study, using a general linear model, we aimed to investigate the roles of both neural and hemodynamic baseline status as well as their interactions in ultrasound-induced responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!