Lung adenocarcinoma (LUAD) is the most common type of lung cancer and is a global public health concern. One-carbon (1C) metabolism plays a crucial role in the occurrence and development of multiple cancer types. However, there are limited studies investigating 1C metabolism in LUAD. This study aims to evaluate the prognostic value of 1C metabolism-related genes in LUAD and to explore the potential correlation of these genes with gene methylation, the tumor microenvironment, and immunotherapy. We identified 26 1C metabolism-related genes and performed a Kaplan-Meier and Cox regression analysis to evaluate the prognostic value of these genes. Consensus clustering was further performed to determine the 1C metabolism-related gene patterns in LUAD. The clinical and molecular characteristics of subgroups were investigated based on consensus clustering. CIBERSORT and ssGSEA algorithms were used to calculate the relative infiltration levels of multiple immune cell subsets. The relationship between 1C metabolism-related genes and drug sensitivity to immunotherapy was evaluated using the CellMiner database and IMvigor210 cohort, respectively. The expression levels of 23 1C metabolism-related genes were significantly different between LUAD tumor tissues and normal tissues. Seventeen of these genes were related to prognosis. Two clusters (cluster 1 and cluster 2) were identified among 497 LUAD samples based on the expression of 7 prognosis-related genes. Distinct expression patterns were observed between the two clusters. Compared to cluster 2, cluster 1 was characterized by inferior overall survival (OS) (median OS = 41 vs. 60 months, = 0.00031), increased tumor mutation burden (15.8 vs. 7.5 mut/Mb, < 0.001), high expression of PD-1 ( < 0.001) and PD-L1 ( < 0.001), as well as enhanced immune infiltration. 1C metabolism-related genes were positively correlated with the expression of methylation enzymes, and a lower methylation level was observed in cluster 1 ( = 0.0062). Patients in cluster 1 were resistant to chemotherapy drugs including pemetrexed, gemcitabine, paclitaxel, etoposide, oxaliplatin, and carboplatin. The specific expression pattern of 1C metabolism-related genes was correlated with a better OS in patients treated with immunotherapy (median OS: 11.2 vs. 7.8 months, = 0.0034). This study highlights that 1C metabolism is correlated with the prognosis of LUAD patients and immunotherapy efficacy. Our findings provide novel insights into the role of 1C metabolism in the occurrence, development, and treatment of LUAD, and can assist in guiding immunotherapy for LUAD patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9699278PMC
http://dx.doi.org/10.3389/fmolb.2022.1034208DOI Listing

Publication Analysis

Top Keywords

metabolism-related genes
24
genes
11
luad
9
one-carbon metabolism
8
tumor microenvironment
8
lung adenocarcinoma
8
occurrence development
8
evaluate prognostic
8
genes luad
8
consensus clustering
8

Similar Publications

Bioinformatics analysis of mitochondrial metabolism-related genes demonstrates their importance in renal cell carcinoma.

Discov Oncol

January 2025

Clinical Research and Development Center, Division of Nephrology, Department of Internal Medicine, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Purpose: Clear cell renal cell carcinoma (ccRCC) is resistant to radiotherapy and chemotherapy. Thus, it is necessary to find new diagnostic markers and therapeutic targets to increase the overall outcomes of ccRCC. Recent studies have shown that therapeutic methods that interfere with the energy transfer system can also positively affect the treatment process.

View Article and Find Full Text PDF

Recent studies have highlighted the critical role of lipid metabolism in macrophages concerning lung inflammation. However, it remains unclear whether lipid metabolism is involved in macrophage extracellular traps (METs). We analyzed the GSE40885 dataset from the GEO database using weighted correlation network analysis (WGCNA) and further selection using the least absolute shrinkage and selection operator (LASSO) regression.

View Article and Find Full Text PDF

Parkinson's disease (PD) and insomnia are prevalent neurological disorders, with emerging evidence implicating tryptophan (TRP) metabolism in their pathogenesis. However, the precise mechanisms by which TRP metabolism contributes to these conditions remain insufficiently elucidated. This study explores shared tryptophan metabolism-related genes (TMRGs) and molecular mechanisms underlying PD and insomnia, aiming to provide insights into their shared pathogenesis.

View Article and Find Full Text PDF

Metabolic reprogramming, vital for cancer cells to adapt to the altered microenvironment, remains a topic requiring further investigation for different tumor types. Our study aims to elucidate shared metabolic reprogramming across breast (BRC), colorectal (CRC), and lung (LUC) cancers. Leveraging gene expression data from the Gene Expression Omnibus and various bioinformatics tools like MSigDB, WebGestalt, String, and Cytoscape, we identified key/hub metabolism-related genes (MRGs) and their interactions.

View Article and Find Full Text PDF

Impact of Endocrine Disruptors on Key Events of Hepatic Steatosis in HepG2 Cells.

Food Chem Toxicol

January 2025

RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic. Electronic address:

Endocrine-disrupting compounds (EDCs) may contribute to the rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). We investigated the potential of 10 environmentally relevant EDCs to affect key events of hepatic steatosis in HepG2 human hepatoma cells. Increased lipid droplet formation, a key marker of steatosis, was induced by PFOA, bisphenol F, DDE, butylparaben, and DEHP, within the non-cytotoxic concentration range of 1 nM-25 μM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!