Triple-negative breast cancer (TNBC) is a heterogeneous and invasive breast cancer (BC) subtype that is estrogen receptor-negative, progesterone receptor-negative, and human epidermal growth factor receptor 2 (Her2)-negative. So far, the treatment of TNBC is still ineffective due to the lack of well-defined molecular targets. Exosomes are nanosized extracellular vesicles composed of lipid bilayers. They originate from various types of donor cells and release a complex mixture of contents including diverse nucleic acid types (miRNA, LnRNA, siRNA, and DNA) and proteins; after binding to recipient cells the exosomes release their contents that execute their biological functions. Exosomes have been reported to play an important role in the tumorigenesis of TNBC, including tumor initiation, metastasis, angiogenesis, cell proliferation, immune escape, and drug resistance. On the other hand, exosomes can be valuable biomarkers for diagnosis, monitoring, and treatment of TNBC. More interestingly, exosomes can be harnessed as a nanosized drug-delivery system specifically targeting TNBC. In this review, we present the most recent mechanistic findings and clinical applications of exosomes in TNBC therapy, focusing on their use as diagnostic and prognostic biomarkers, nanoscale drug delivery platforms, and immunotherapeutic agents. In addition, the associated challenges and future directions of using exosomes for TNBC treatment will be discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684310 | PMC |
http://dx.doi.org/10.3389/fmolb.2022.1022725 | DOI Listing |
Sci Rep
December 2024
Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, China.
Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.
View Article and Find Full Text PDFMetaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.
View Article and Find Full Text PDFthe evolution of axillary management in breast cancer has witnessed significant changes in recent decades, leading to an overall reduction in surgical interventions. There have been notable shifts in practice, aiming to minimize morbidity while maintaining oncologic outcomes and accurate staging for newly diagnosed breast cancer patients. These advancements have been facilitated by the improved efficacy of adjuvant therapies.
View Article and Find Full Text PDFthe axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!