Background: Structural neuroimaging studies have identified similarities in the brains of individuals diagnosed with schizophrenia (SZ) and bipolar I disorder (BP), with overlap in regions of gray matter (GM) deficits between the two disorders. Recent studies have also shown that the symptom phenotypes associated with SZ and BP may allow for a more precise categorization than the current diagnostic criteria. In this study, we sought to identify GM alterations that were unique to each disorder and whether those alterations were also related to unique symptom profiles.

Materials And Methods: We analyzed the GM patterns and clinical symptom presentations using independent component analysis (ICA), hierarchical clustering, and n-way biclustering in a large ( ∼ 3,000), merged dataset of neuroimaging data from healthy volunteers (HV), and individuals with either SZ or BP.

Results: Component A showed a SZ and BP < HV GM pattern in the bilateral insula and cingulate gyrus. Component B showed a SZ and BP < HV GM pattern in the cerebellum and vermis. There were no significant differences between diagnostic groups in these components. Component C showed a SZ < HV and BP GM pattern bilaterally in the temporal poles. Hierarchical clustering of the PANSS scores and the ICA components did not yield new subgroups. N-way biclustering identified three unique subgroups of individuals within the sample that mapped onto different combinations of ICA components and symptom profiles categorized by the PANSS but no distinct diagnostic group differences.

Conclusion: These multivariate results show that diagnostic boundaries are not clearly related to structural differences or distinct symptom profiles. Our findings add support that (1) BP tend to have less severe symptom profiles when compared to SZ on the PANSS without a clear distinction, and (2) all the gray matter alterations follow the pattern of SZ < BP < HV without a clear distinction between SZ and BP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9684186PMC
http://dx.doi.org/10.3389/fnhum.2022.1001692DOI Listing

Publication Analysis

Top Keywords

component pattern
12
symptom profiles
12
bipolar disorder
8
gray matter
8
alterations unique
8
hierarchical clustering
8
n-way biclustering
8
ica components
8
clear distinction
8
symptom
6

Similar Publications

Cellular distribution of some intermediate filaments in the rat mammary gland during pregnancy, lactation and involution.

Pol J Vet Sci

December 2024

Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.

Intermediate filaments (IFs) play a major role in determining and maintaining cell shape and anchoring intracellular organelles in place, in the tissues and organs of several species, starting from the early stages of development. This study was aimed at the immunohistochemical investigation of the presence, cellular localization and temporal distribution of the intermediate filaments keratin 8 (CK8), keratin 18 (CK18), keratin 19 (CK19), vimentin, desmin and laminin, all of which contribute to the formation of the cytoskeleton in the rat mammary gland during pregnancy, lactation and involution. On days 7, 14 and 21 of pregnancy (pregnancy period), on day 7 post-delivery (lactation period) and on day 7 post-weaning (involution period), under ketamine hydrochloride (Ketalar-Pfizer) (90 mg/kg) anesthesia, two mammary glands were fully excised from the abdominal region.

View Article and Find Full Text PDF

Identification and Characterisation of Potential Targets for N6-methyladenosine (m6A) Modification during Intervertebral Disc Degeneration.

Front Biosci (Landmark Ed)

November 2024

Department of Orthopaedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, Sichuan, China.

Background: The mechanism for RNA methylation during disc degeneration is unclear. The aim of this study was to identify N6-methyladenosine (m6A) markers and therapeutic targets for the prevention and treatment of intervertebral disc degeneration (IDD).

Methods: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and quantitative reverse transcription PCR (RT-qPCR) were employed to analyze m6A modifications of IDD-related gene expression.

View Article and Find Full Text PDF

When health professions learners do not meet standards on assessments, educators need to share this information with the learners and determine next steps to improve their performance. Those conversations can be difficult, and educators may lack confidence or skill in holding them. For clinician-educators with experience sharing challenging news with patients, using an analogy from clinical settings may help with these conversations in the education context.

View Article and Find Full Text PDF

In addition to the usual loads, fixed jacket offshore platforms can be exposed to accidental loads from ship collisions. Indentation of tubular components is a significant defect that occurs when a supply vessel collides with a jacket platform, which can affect the ultimate strength of the offshore platform. This paper performs a nonlinear dynamic analysis using ABAQUS software to evaluate the ultimate strength of a wellhead jacket platform and to investigate its structural response to two consecutive impacts from a 2700-ton ship.

View Article and Find Full Text PDF

We examined how thalamocortical connectivity structure reflects children's reading performance. Diffusion-weighted MRI at 3 T and a series of reading measures were collected from 64 children (33 girls) ages 8-14 years with and without dyslexia. The topological properties of the left and right thalamus were computed based on the whole-brain white matter network and a hub-attached reading network, and were correlated with scores on several tests of children's reading and reading-related abilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!