Moringa is regarded as a miracle tree because all components of the plant, including the roots, leaves, pod, and flowers, have significant nutritional and therapeutic value. . pods have excellent antioxidant characteristics and are a good source of protein, carbohydrate, fat, vitamins, beta-carotene, amino acids, and phenolic compounds. The pods of . were collected from the local market of Sunamganj, and their nutritional value was assessed in raw condition and after thermal processing. The goal of this research was to observe how the thermal temperature affected the antioxidant and physicochemical qualities of thermally-processed . pods. Thermal treatment diminished the amount of crude protein, fat, carbohydrate, ash, ascorbic acid, and beta-carotene in the pods, as well as DPPH, total phenol content, and total flavonoid content. The moisture percentage of raw and thermally-processed . pods was determined to be 83.12%, 86.03% with a total ash level of 2.01%, and 1.8%, respectively. The crude protein, fat content, and carbohydrate were 3.0%, 0.1%, and 3.2%, respectively, in thermally-processed pods. The values for total phenol content, total flavonoid content, vitamin C, DPPH free radical scavenging activity, and -carotene were 28.13 mg, 2.98 mg, 38.23%, 3.98 mg, and 0.12 mg, respectively, in raw samples whereas 24.56 mg, 2.72 mg, 3.50 mg, 34.32%, and 0.0904 mg, respectively, in thermally-processed samples. According to the findings, . pods have high nutritional content and thus can be used as an excellent source of diet, and even after thermal processing, a significant nutritive value remains in the . pods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9683968PMC
http://dx.doi.org/10.1155/2022/1502857DOI Listing

Publication Analysis

Top Keywords

thermal processing
12
thermally-processed pods
12
pods
9
crude protein
8
protein fat
8
total phenol
8
phenol content
8
content total
8
total flavonoid
8
flavonoid content
8

Similar Publications

Ultrathin indium oxide films show great potential as channel materials of complementary metal oxide semiconductor back-end-of-line transistors due to their high carrier mobility, smooth surface, and low leakage current. However, it has severe thermal stability problems (unstable and negative threshold voltage shifts at high temperatures). In this paper, we clarified how the improved crystallinity of indium oxide by using ultrahigh-temperature rapid thermal O annealing could reduce donor-like defects and suppress thermal-induced defects, drastically enhancing thermal stability.

View Article and Find Full Text PDF

Luminescent materials doped with rare-earth (RE) ions have emerged as powerful tools in thermometry, offering high sensitivity and accuracy. However, challenges remain, particularly in maintaining efficient luminescence at elevated temperatures. This study investigates the thermometric properties of BiVO: Yb/Er (BVO: Er/Yb) nanophosphors synthesized the sol-gel method.

View Article and Find Full Text PDF

Process-based screening of porous materials for vacuum swing adsorption based on 1D classical density functional theory and PC-SAFT.

Mol Syst Des Eng

January 2025

Energy & Process Systems Engineering, Department of Mechanical and Process Engineering, ETH Zurich Zurich Switzerland

Adsorption-based processes are showing substantial potential for carbon capture. Due to the vast space of potential solid adsorbents and their influence on the process performance, the choice of the material is not trivial but requires systematic approaches. In particular, the material choice should be based on the performance of the resulting process.

View Article and Find Full Text PDF

A novel silica-based material (SBM), synthesized from chemically-, thermally-, and mechanically-treated blast furnace slag (TBFS), was examined for its batch-mode lead adsorption capacity based on various parameters. Physicochemical examinations revealed that the formulation of the new SBM consisted mainly of silica, which represented 81.79% of its total composition.

View Article and Find Full Text PDF

Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!