The selective detection of mannose is significant for tumor early diagnosis. However, current methods for detecting mannose are expensive and time-consuming, limiting their application. In this paper, we have obtained a 25-layer positively charged micellar/LDHs nanocomposite film system by electrostatic layer-by-layer assembly with reference to the unique properties of homogeneous charge ion attraction and charge overcompensation in biomolecules: hexadecyl trimethylammonium bromide (CTAB) was used to coat neutral molecules of fluorescein (FLU) to form (FLU@CTAB) cationic micelles, which were electrostatically assembled with laminate positively charged layered double hydroxides (LDHs) nanosheets to form (FLU@CTAB/LDHs) ultrathin films (UTFs) by the layer-by-layer electrostatic assembly, where the mediating role of the Br counteranion had a profound effect on the success of the assembly. Moreover, compared to pure FLU solution, the fluorescence intensity and the lifetime of (FLU@CTAB/LDHs) UTFs were enhanced by 1.6 and 2 times, respectively. (FLU@CTAB/LDHs) UTFs exhibited selective detection for d-mannose with a detection limit of 0.05 mg·mL. Therefore, the (FLU@CTAB/LDHs) UTFs can be a novel biosensor. Compared to conventional powder sensors, (FLU@CTAB/LDHs) thin-film fluorescent sensors are more promising for device implementation. Moreover, the design strategy of positively charged micellar/LDHs nanocomposite systems breaks the current limitation that LDHs can only be assembled with anions or neutral molecules and extends the scope of counterion-mediated host-guest to the nanosheet-micellar system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.2c02225DOI Listing

Publication Analysis

Top Keywords

positively charged
16
selective detection
12
flu@ctab/ldhs utfs
12
layered double
8
double hydroxides
8
detection mannose
8
charged micellar/ldhs
8
micellar/ldhs nanocomposite
8
neutral molecules
8
flu@ctab/ldhs
5

Similar Publications

Atomic force microscopy (AFM) has recently received increasing interest in molecular biology. This technique allows quick and reliable detection of biomolecules. However, studying RNA-protein complexes using AFM poses significant challenges.

View Article and Find Full Text PDF

Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN).

View Article and Find Full Text PDF

The advancement of safe nanomaterials for use as optical coherence tomography (OCT) imaging and stem cell-labeling agents to longitudinally visually track therapeutic derived retinal stem cells to study their migration, survival rate, and efficacy is challenged by instability, intracellular aggregation, low uptake, and cytotoxicity. Here, we describe a series of hybrid lipid-coated gold nanorods (AuNRs) that could solve these issues. These nanomaterials were made via a layer-by-layer assembly approach, and their stability in biological media, mechanism, efficiency of uptake, and toxicity were compared with a commercially available set of AuNRs with a 5 nm mesoporous silica (mSiO)-polymer coating.

View Article and Find Full Text PDF

ssDNA Capture Dynamics by Graphene Nanopores: The Role of Electrophoresis and Electro-osmotic Flow.

J Phys Chem Lett

January 2025

School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.

Efficient capture of single-stranded DNA (ssDNA) is crucial for high-throughput sequencing, which influences the speed and accuracy of genetic analysis. Electrophoresis (EP) and electro-osmotic flow (EOF) have a significant impact on the translocation behavior of ssDNA through the nanopore. Experimentally, dynamically tracking these two effects remains challenging, and conventional numerical methods also struggle to capture their dynamic properties in the presence of DNA.

View Article and Find Full Text PDF

Efficient Cytosolic Delivery of Single-Chain Polymeric Artificial Enzymes for Intracellular Catalysis and Chemo-Dynamic Therapy.

J Am Chem Soc

January 2025

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200438, P. R China.

Designing artificial enzymes for in vivo catalysis presents a great challenge due to biomacromolecule contamination, poor biodistribution, and insufficient substrate interaction. Herein, we developed single-chain polymeric nanoparticles with Cu/N-heterocyclic carbene active sites (SCNP-Cu) to function as peroxidase mimics for in vivo catalysis and chemo-dynamic therapy (CDT). Compared with the enzyme mimics based on unfolded linear polymer scaffold and multichain cross-linked scaffold, SCNP-Cu exhibits improved tumor accumulation and CDT efficiency both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!