AI Article Synopsis

  • Household burning of solid biomass fuels, common in low-income countries, releases high levels of pollution particles that pose significant health risks, particularly in Sub-Saharan Africa.
  • Laboratory studies, simulating real-life conditions, revealed that burning fuels like dung emitted far more particulate matter than fuels like charcoal, often exceeding WHO air quality guidelines.
  • The study emphasizes the importance of understanding different biomass fuels' chemical compositions and particle sizes, suggesting further research on diverse sources of pollution, including vehicles and waste burning, to better address air quality issues in low-income regions.

Article Abstract

Household burning of solid biomass fuels emits pollution particles that are a huge health risk factor, especially in low-income countries (LICs) such as those in Sub-Saharan Africa. In epidemiological studies, indoor exposure is often more challenging to assess than outdoor exposure. Laboratory studies of solid biomass fuels, performed under real-life conditions, are an important path toward improved exposure assessments. Using on- and offline measurement techniques, particulate matter (PM) from the most commonly used solid biomass fuels (charcoal, wood, dung, and crops residue) was characterized in laboratory settings using a way of burning the fuels and an air exchange rate that is representative of real-world settings in low-income countries. All the fuels generated emissions that resulted in concentrations which by far exceed both the annual and the 24-hour-average WHO guidelines for healthy air. Fuels with lower energy density, such as dung, emitted orders of magnitude more than, for example, charcoal. The vast majority of the emitted particles were smaller than 300 nm, indicating high deposition in the alveoli tract. The chemical composition of the indoor pollution changes over time, with organic particle emissions often peaking early in the stove operation. The chemical composition of the emitted PM is different for different biomass fuels, which is important to consider both in toxicological studies and in source apportionment efforts. For example, dung and wood yield higher organic aerosol emissions, and for dung, nitrogen content in the organic PM fraction is higher than for the other fuels. We show that aerosol mass spectrometry can be used to differentiate stove-related emissions from fuel, accelerant, and incense. We argue that further emission studies, targeting, for example, vehicles relevant for LICs and trash burning, coupled with field observations of chemical composition, would advance our understanding of air pollution in LIC. We believe this to be a necessary step for improved air quality policy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9828024PMC
http://dx.doi.org/10.1111/ina.13143DOI Listing

Publication Analysis

Top Keywords

biomass fuels
20
solid biomass
16
chemical composition
12
fuels
9
particulate matter
8
low-income countries
8
biomass
5
characterization fine
4
fine particulate
4
matter indoor
4

Similar Publications

Evaluating the Laboratory Performance of Pellet-Fueled Semigasifier Cookstoves.

Environ Sci Technol

January 2025

Air Methods and Characterization Division, U.S. Environmental Protection Agency, Office of Research and Development, 109 T.W. Alexander Drive, Research Triangle Park, North Carolina 27709, United States.

This study examines three representative semigasifier cookstove models each burning four types of pelletized-biomass fuel (hardwood, peanut hull, rice husk, and wheat straw) using the International Organization for Standardization (ISO) 19867-1:2018 protocol. ISO tier ratings for fine particulate matter (PM) and carbon monoxide (CO) emissions ranged 1-4 and 2-5 (where 5 = cleanest), respectively, suggesting that pellet-fueled cookstoves may provide substantial emissions reductions, dependent upon stove/fuel matching and operation, over other biomass-fueled cooking alternatives. PM emission factors based on useful energy delivered (EF) varied by up to 25-fold, and organic and elemental carbon (OC and EC) EF values respectively varied by >200- and ∼100-fold, reflecting complex variability in PM composition.

View Article and Find Full Text PDF

Electrosynthesis of ethylene glycol from biomass glycerol.

Nat Commun

January 2025

Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.

Ethylene glycol, a widely used chemical, has a large global capacity exceeding 40 million tons per year. Nevertheless, its production is heavily reliant on fossil fuels, resulting in substantial CO emissions. Herein, we report an approach for electrochemically producing ethylene glycol from biomass glycerol.

View Article and Find Full Text PDF

Formate is an important solar fuel, with large application potential in bioconversion. Especially, the win-win collaboration is achieved when formate is applied to the cultivation of microalgae, which combines the advantages from both artificial and natural photosynthesis. However, the inhibition of formate on the photosynthetic electron transport hinders the application of formate at high concentrations.

View Article and Find Full Text PDF

In much of the northern Great Basin of the western United States, rangelands, and semi-arid ecosystems invaded by exotic annual grasses such as cheatgrass () and medusahead () are experiencing an increasingly short fire cycle, which is compounding and persistent. Improving and expanding ground-based field methods for measuring the above-ground biomass (AGB) may enable more sample collections across a landscape and over succession regimes and better harmonize with other remote sensing techniques. Developments and increased adoption of unoccupied aerial systems (UAS) and instrumentation for vegetation monitoring enable greater understanding of vegetation in many ecosystems.

View Article and Find Full Text PDF

Laboratory evolution in enables rapid catabolism of a model lignin-derived aromatic dimer.

Appl Environ Microbiol

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.

Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!